DOI QR코드

DOI QR Code

THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION

  • Hahm, Nahmwoo (Department of Mathematics, Incheon National University) ;
  • Hong, Bum Il (Department of Applied Mathematics, Kyung Hee University)
  • Received : 2013.10.10
  • Accepted : 2013.10.16
  • Published : 2013.12.25

Abstract

In this paper, we investigate a localized approximation of a continuously differentiable function by neural networks. To do this, we first approximate a continuously differentiable function by B-spline functions and then approximate B-spline functions by neural networks. Our proofs are constructive and we give numerical results to support our theory.

Keywords

References

  1. C. K. Chui, X. Li and H. N. Mhaskar, Limitations of the approximation capabilities of neural networks with one hidden layer, Adv. Comput. Math., 5 (1996), 233-243. https://doi.org/10.1007/BF02124745
  2. B. Gao and Y. Xu, Univariant approximation by superpositions of a sigmoidal function, J. Math. Anal. Appl., 178 (1993), 221-226. https://doi.org/10.1006/jmaa.1993.1302
  3. N. Hahm and B. I. Hong, Extension of localised approximation by neural networks, Bull. Austral. Math. Soc., 59 (1999), 121-131. https://doi.org/10.1017/S0004972700032676
  4. N. Hahm and B. I. Hong, An approximation by neural networks with a fixed weight, Comput. Math. Appl., 47 (2004), 1897-1903. https://doi.org/10.1016/j.camwa.2003.06.008
  5. N. Hahm and B. I. Hong, Approximation order to a function in $L_{p}$ space by generalized translation networks, Honam Math. J. 28(1) (2006), 125-133.
  6. N. Hahm and B. I. Hong, A simultaneous neural network approximation with the squashing function, Honam Math. J. 31(2) (2009), 147-156. https://doi.org/10.5831/HMJ.2009.31.2.147
  7. B. I. Hong and N. Hahm, Approximation order to a function in C(R) by superposition of a sigmoidal function, Appl. Math. Lett., 15 (2002), 591-597. https://doi.org/10.1016/S0893-9659(02)80011-8
  8. B. L. Kalman and S. C. Kwasny, Why Tanh : Choosing a sigmoidal function, Int. Joint Conf. on Neural Networks 4 (1992), 578-581.
  9. M. Leshno, V. Lin, A. Pinkus and S. Schocken, Multilayered feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, 6 (1993), 61-80.
  10. G. Lewicki and G. Marino, Approximation of functions of finite variation by superpositions of a sigmoidal function, Appl. Math. Lett. 17 (2004), 1147-1152. https://doi.org/10.1016/j.aml.2003.11.006
  11. H. N. Mhaskar and N. Hahm, Neural networks for functional approximation and system identification, Neural Comput., 9 (1997), 143-159. https://doi.org/10.1162/neco.1997.9.1.143
  12. L. L. Schumaker, Spline Functions : Basic Theory, Cambridge University Press, Cambridge, 2007.