• Title/Summary/Keyword: spline function solution

Search Result 27, Processing Time 0.03 seconds

Spline function solution for the ultimate strength of member structures

  • Zhang, Qi-Lin;Shen, Zu-Yan
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.185-196
    • /
    • 1994
  • In this paper a spline function solution for the ultimate strength of steel members and member structures is derived based on total Lagrangian formulation. The displacements of members along longitudinal and transverse directions are interpolated by one-order B spline functions and three-order hybrid spline functions respectively. Equilibrium equations are established according to the principle of virtual work. All initial imperfections of members and effects of loading, unloading and reloading of material are taken into account. The influence of the instability of members on structural behavior can be included in analyses. Numerical examples show that the method of this paper can satisfactorily analyze the elasto-plastic large deflection problems of planar steel member and member structures.

A spline finite element method on mapping

  • Ding, Hanshan;Shao, Rongguang;Ding, Dajun
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.415-424
    • /
    • 1996
  • This paper presents a newly suggested calculation method in which an arbitrary quadrilateral element with curved sides is transformed to a normal rectangular one by mapping of coordinates, then the two-dimensional spline is adopted to approach the displacement function of this element. Finally the solution can be obtained by the least-energy principle. Thereby, the application field of Spline Finite Element Method will be extended.

A continuous solution of the heat equation based on a fuzzy system

  • Moon, Byung-Soo;Hwang, In-Koo;Kwon, Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • A continuous solution of the Dirichlet boundary value problem for the heat equation $u_t$$a2u_{xx}$ using a fuzzy system is described. We first apply the Crank-Nicolson method to obtain a discrete solution at the grid points for the heat equation. Then we find a continuous function to represent approximately the discrete values at the grid points in the form of a bicubic spline function (equation omitted) that can in turn be represented exactly by a fuzzy system. We show that the computed values at non-grid points using the bicubic spline function is much smaller than the ones obtained by linear interpolations of the values at the grid points. We also show that the fuzzy rule table in the fuzzy system representation of the bicubic spline function can be viewed as a gray scale image. Hence, the fuzzy rules provide a visual representation of the functions of two variables where the contours of different levels for the function are shown in different gray scale levels

Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for an Oscillating Cylinder Advancing in the Free Surface

  • Hong, Do-Chun;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.34-53
    • /
    • 2002
  • Numerical solution of the forward-speed radiation problem for a half-immersed cylinder advancing in regular waves is presented by making use of the improved Green integral equation in the frequency domain. The B-spline higher order panel method is employed stance the potential and its derivative are unknown at the same time. The present numerical solution of the improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the Green integral equation using the forward-speed Kelvin-type Green function.

Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation

  • Choi, C.K.;Hong, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.313-328
    • /
    • 2001
  • A multi-span bridge has the peak value of resultant girder moment or membrane stress at the interior support. In this paper, the spline finite strip method (FSM) is modified to obtain the more appropriate solution at the interior support where the peak values of solution exist. The modification has been achieved by expressing the shape function with non-periodic B-splines which have multiple knots at the boundary. The modified B-splines have the useful feature for interpolating the curve with sudden change in curvature. Moreover, the modified spline FSM is very efficient in analyzing multi-span box girder bridges, since a bridge can be modeled by an assembly of strips extended along the entire bridge length. Numerical examples of the bridge analysis have been performed to verify the efficiency and accuracy of the new spline FSM.

An Alternative Point-Matching Technique for Fredholm Integral Equations of Second Kind (제2종 Rredholm 적분방정식의 새로운 수식해법)

  • 이직열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.83-86
    • /
    • 1985
  • An alternative technique (or the numerical solution of Fredholm integral equations of second kind is presented. The approximate solution is obtained by fitting the data in mixed form at knots in the region of the problem. To decrease the error in the numerical solution, cubic B-spline functions which are twice continuously differentiable at knots are employed as basis function. For a given example, the results of this technique are compared with those of Moment method employing pulse functions for basis function and delta functions for test function and found to br in good agreement.

  • PDF

A non-symmetric non-periodic B3-spline finite strip method

  • Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.247-262
    • /
    • 2004
  • In the earlier application of the spline finite strip method(FSM), the uniform B3-spline functions were used in the longitudinal direction while the conventional interpolation functions were used in the transverse direction to construct the displacement filed in a strip. To overcome the shortcoming of the uniform B3-spline, non-periodic B-spline was developed as the displacement function. The use of non-periodic B3-spline function requires no tangential vectors at both ends to interpolate the geometry of shell and the Kronecker delta property is also satisfied at the end boundaries. Recently, non-periodic spline FSM which was modified to have a multiple knots at the boundary was developed for the shell analysis and applied to the analysis of bridges. In the formulation of a non-symmetric spline finite strip method, the concepts of non-periodic B3-spline and a stress-resultant finite strip with drilling degrees of freedom for a shell are used. The introduction of non-symmetrically spaced knots in the longitudinal direction allows the selective local refinement to improve the accuracy of solution at the connections or at the location of concentrated load. A number of numerical tests were performed to prove the accuracy and efficiency of the present study.

A B-spline based Branch & Bound Algorithm for Global Optimization (전역 최적화를 위한 B-스플라인 기반의 Branch & Bound알고리즘)

  • Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2010
  • This paper introduces a B-spline based branch & bound algorithm for global optimization. The branch & bound is a well-known algorithm paradigm for global optimization, of which key components are the subdivision scheme and the bound calculation scheme. For this, we consider the B-spline hypervolume to approximate an objective function defined in a design space. This model enables us to subdivide the design space, and to compute the upper & lower bound of each subspace where the bound calculation is based on the LHS sampling points. We also describe a search tree to represent the searching process for optimal solution, and explain iteration steps and some conditions necessary to carry out the algorithm. Finally, the performance of the proposed algorithm is examined on some test problems which would cover most difficulties faced in global optimization area. It shows that the proposed algorithm is complete algorithm not using heuristics, provides an approximate global solution within prescribed tolerances, and has the good possibility for large scale NP-hard optimization.

Graphic Representation of Solutions of Partial Differential Equations Using their Corresponding Fuzzy Systems

  • 문병수
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.4.2-4
    • /
    • 2003
  • In this paper, we describe how to approximate the solutions of partial differential equations by bicubic spline functions whose interpolation errors at non-grid points are smaller in general than those by linear interpolations of the original solution at grid points. We show that the bicubic spline function can be represented exactly or approximately by a fuzzy system, and that the resulting fuzzy rule table shows the contours of the solution function. Thus, the fuzzy rule table is identified as a digital image and the contours in the rule table provide approximate contours of the solution of partial differential equations. Several illustrative examples are included.

  • PDF

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.