• 제목/요약/키워드: spinning

검색결과 1,047건 처리시간 0.025초

돔 형상의 스피닝 가공 공정에서 롤의 이송 속도와 소재의 두께감소에 대한 성형력 연구 (A Study on the Forming Load for roller feed rate and Thickness Reduction in the spinning Process of launch vehicle fuel tank dome)

  • 염성호;남경오;홍성인
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.387-390
    • /
    • 2006
  • 스피닝은 가장적은 가공력과 간단한 도구를 이용하여 소재를 변형시키는 방법중의 하나이다. 그리고 소재의 소성변형으로 인해 기계적 특성의 향상을 가져오는 공법이다. 이러한 스피닝 공법은 자동차, 항공, 군사 분야에서 중요한 부품의 생산에 적용되는 기술이다. 본 연구에서는 발사체 연료탱크의 돔형상에 스피닝 공법을 적용하여 제작함에 있어 롤러의 이송속도와 소재의 두께감소에 따른 성형력의 경향을 유한요소 해석을 이용하여 분석하였다.

  • PDF

스피닝공정에 있어서 스프링백 억제방안 (Springback Reduction of Multi-step Cylindrical Cup in Spinning Process.)

  • 박중언;이우영;최석우;김승수;나경환
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.186-191
    • /
    • 2001
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method for producing parts than the other sheet metal forming process such as stamping or deep drawing. In this study, a fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate($\gamma$) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to hale an effect on spring back. The empirical results were analyzed to know how much spring back was affected by these factors. And also thickness and diameter distribution of a multistage cup obtained by spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석 (Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation)

  • 신응수;이기녕;신태명;김옥현
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

체감형 스피닝 게임 구현을 위한 스포츠 기능적 움직임 (Sport Functional Movement for Physically Interactive Spinning Game Implementation)

  • 길영익;이현주;고일주
    • 한국게임학회 논문지
    • /
    • 제20권2호
    • /
    • pp.139-152
    • /
    • 2020
  • 체감형 스포츠 게임은 가상경기뿐만 아니라 훈련이 가능한 형태로 확대되어 실제 스포츠를 대체하고 있다. 기존 체감형 스포츠 게임은 실재감과 몰입을 위한 기술적 연구가 대부분이며, 운동 경험을 위한 스포츠 움직임과 관련된 연구는 부족하다. 스포츠 기능적 움직임은 실제 스포츠 경기의 기본 움직임이며, 본 논문에서는 스피닝의 기능적 움직임을 적용하여 실제 스피닝을 대체할 수 있고 개인이 진행 가능한 체감형 스피닝 게임을 구현한다. 스포츠 기능적 움직임은 실제 스포츠 종목을 대체할 수 있는 체감형 스포츠 게임을 만들기 위한 적절한 방법이 될 것으로 기대한다.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

균일류의 회전원주 제어에 의한 유동 및 공력 제어효과에 관한 연구 (Control effects of the flow and the aerodynamic force around the downstream cylinder by a spinning upstream cylinder in uniform flow)

  • 부정숙;양종필;김창수;신영곤
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.346-359
    • /
    • 1998
  • The aerodynamic forces and wake structure of the non-rotating downstream circular cylinder, of which the uniform freestream flow is interfered with another spinning upstream cylinder having the same diameter that is located upstream in a line have been investigated experimentally. When the spin rate of the downstream cylinder defined as the ratio of tangential surface velocity of the spinning cylinder to the freestream velocity increases gradually from zero to 1.4, the change of surface pressure distribution, aerodynamic forces of the non-rotating downstream cylinder were measured in case of several distance ratios of 1.5, 3.0, and 4.5 defined as the ratio of distance between the centers of two cylinders to the diameter. The wake flow patterns behind the cylinder were also investigated in each case. From the present experiments, it has been found that the spin rate significantly influences the aerodynamic forces and near-wake flow phenomena of the downstream cylinder in such a way that the drag increases as the spin rate and distance ratio increase and the wake width increases as the distance ratio increases.

극세 폴리에스테르 스웨드의 환원세정과 열이행의 영향 (Reduction Cleaning and Thermomigration Effects on Micro Polyester SUEDE)

  • 최경연;한삼숙;이문철
    • 한국염색가공학회지
    • /
    • 제21권6호
    • /
    • pp.12-21
    • /
    • 2009
  • The dyeing property of direct-spinning type and seaisland type 0.2D micro polyester nonwoven fabrics was characterized by three disperse dyes (Dorosperse Red KFFB, Blue KGBR, Yellow KRL) at $120^{\circ}C$ and $130^{\circ}C$. Before and after reduction cleaning, dyeing fastness was evaluated and the thermomigaration after heat setting at $180^{\circ}C$ for 60 min were also evaluated. Direct-spinning type fabric showed better dyeing property, wash fastness, and light fastness, but worse rub fastness than seaisland type fabric. The dyeing property and fastness of direct-spinning type fabric increased at higher dyeing temperature, whereas seaisland type fabric exhibited lower dyeing fastness and the increase of thermomigration at higher dyeing temperature. Non-fixed dye in fiber surface was removed by reduction cleaning process, then dyeing fastness was improved and thermomigration decreased. The higher dye uptake of direct-spinning type non-woven fabric caused the increase of dye molecule migration from fiber internal to fiber surface, so this fabric showed larger thermomigration than seaisland type non-woven fabric.

Preparation of Regenerated Cellulose Fiber via Carbonation (II) - Spinning and Characterization -

  • Oh Sang Youn;Yoo Dong Il;Shin Younsook;Kim Hak Yong;Kim Hwan Chul;Chung Yong Sik;Park Won Ho;Youk Ji Ho
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.95-102
    • /
    • 2005
  • Sodium cellulose carbonate (CC-Na) dissolved in $8.5\;wt\%$ NaOH/ZnO (100/2-3, w/w) aqueous solution was spun into some acidic coagulant systems. Diameter of regenerated cellulose fibers obtained was in the range of $15-50\;{\mu}m$. Serrated or circular cross sectional views were obtained by controlling salt concentration or acidity in the acid/salt/water coagulant systems. Velocity ratio of take-up to spinning was controlled up to 4/1 with increasing spinning velocity from 5 to 40 m/min. Skin structure of was developed at lower acidity or higher concentration of coagulants. Fineness, tenacity and elongation of the regenerated cellulose fibers were in the range of 1.5-27 denier, 1.2-2.2 g/d, and $8-11.3\;\%$, respectively. All of CC-Na and cellulose fibers spun from CC-Na exhibited cellulose II crystalline structure. Crystallinity index was increased with increasing take-up speed.

Rayon-like 섬유의 최적 방사 조건 (Optimum Condition of Spinning for Rayon-like Yarn)

  • 안영무
    • 패션비즈니스
    • /
    • 제12권1호
    • /
    • pp.120-128
    • /
    • 2008
  • Rayon fiber as clothing material has silk-like property which relates to other synthetic fibers. It has many advantages that is required to women's clothes. However rayon has many shortcomings. Therefore this research is to spin rayon-like polyester which has high contraction property to be synthesized by previous research to solve those shortcomings and to maintain advantages of rayon. The contraction ratio of regular polyester is 30% and the contraction ratio of this synthesized polyester is over 60%. The spinning temperature of regular polyester ranges from $285^{\circ}C$ to $300^{\circ}C$. However, this copolymer is set range from $270^{\circ}C$ to $290^{\circ}C$, which is $10^{\circ}C$ less than regular polyester due to decreasing melting temperature. The spinning velocity effects the tensile strength and elongation of yarn magnificently. The high velocity of spinning makes yarn highly oriented, increases the tensile strength and decreases the elongation. This research defines the condition as following; draw ratio 2.734, First roller temperature $85^{\circ}C$, Slit heater temperature $175^{\circ}C$.

초고속 용융 원심방사를 이용한 폴리에틸렌 마이크론 섬유의 제조 (Preparation of Polyethylene Micro-fibers by High Speed Centrifugal Melt Spinning)

  • 양성백;이정언;지병철;주남식;염정현
    • 한국염색가공학회지
    • /
    • 제32권4호
    • /
    • pp.239-244
    • /
    • 2020
  • Polyethylene (PE) micro-fiber have been prepared at different hot air temperature (60, 80 and 100 ℃) and different pressure (20, 40, 60 and 80 kPa) by melt centrifugal spinning technique. The parameters of melting centrifugal spinning including polymer contents, rotational velocity, temperature of hot air and pressure were optimized for the fabrication process. The study showed that 8000 rpm rotational velocity, 80 ℃ heated hot air and 40 kPa air pressure are the best condition to obtain uniform and strong PE fiber. The prepared PE fibers were analyzed by field emission scanning electron microscope and universal testing machine and found that fibers with reduced diameter and improved tensile strength are obtained at hot air condition.