• 제목/요약/키워드: spindle speed

검색결과 618건 처리시간 0.021초

고속 공기 주축부를 위한 복합재료 주축의 최적 설계 (Optimal Design of a High Speed Carbon Composite Air Spindle)

  • 방경근;이대길
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

원통형 주축 변위 센서를 이용한 고속 밀링 가공 상태 감시 (A Cylindrical Spindle Displacement Sensor and its Application on High Speed Milling Machine)

  • 김일해;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.108-114
    • /
    • 2007
  • A new cutting force estimating approach and machining state monitoring examples are presented which uses a cylindrical displacement sensor built into the spindle. To identify the tool-spindle system dynamics with frequency up to 2 kHz, a home-built electro-magnetic exciter is used. The result is used to build an algorithm to extract the dynamic cutting force signal from the spindle error motion; because the built-in spindle sensor signal contains both spindle-tool dynamics and tool-workpiece interactions. This sensor is very sensitive and can measure broadband signal without affecting the system dynamics. The main characteristic is that it is designed so that the measurement is irrelevant to the geometric errors by covering the entire circumferential area between the target and sensor. It is also very simple to be installed. Usually the spindle front cover part is copied and replaced with a new one with this sensor added. It gives valuable information about the operating condition of the spindle at any time. It can be used to monitor cutting force and chatter vibration, to predict roughness and to compensate the form error by overriding spindle speed or feed rate. This approach is particularly useful in monitoring a high speed machining process.

PCB드릴링용 공기 베어링 스핀들의 설계 제작 및 성능평가에 관한 연구 (A study on the design, manufacturing and performance evaluation of air bearing spindle for PCB drilling)

  • 김상진;배명일;김형철;김기수
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.29-36
    • /
    • 2006
  • Micro drilling by high-speed air bearing spindle is very useful manufacturing technology in electronic industry For the design of high speed air bearing spindle, there are considered stability of air bearing spindle, allowable load of air bearing, run out and tooling system design for micro drill's attach and remove. According to suggested details, we designed and manufactured high-speed air bearing spindle and carried out performance estimation such as run out, temperature change in running air bearing spindle, stiffness, chucking torque. Results are follows; Run out was measured under $5{\mu}m$ at air bearing spindle revolution $20,000\sim125,000rpm$. High speed air bearing spindle's temperature rose about $20^{\circ}C$ after 5 minutes from running and then was fixed. Allowable thrust load of spindle was 17kgf. Chucking torque of collet was 15kgfcm.

수직형 소형정미기의 벼 도정 특성 -주축회전수, 롤러의 세라믹코팅길이, 이송스크루 피치의 최적 설계조건에 대하여- (Milling Characteristics of Vertical Small Scale Milling Machine for the Rough Rice -Optimum design conditions of main spindle speed, ceramic coating length of roller and feed screw pitch-)

  • 연광석;한충수;조성찬
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.177-188
    • /
    • 2001
  • This research was carried out to examine the optimum design conditions of a vertical small-scale milling machine where the rough rice is processed directly into the white rice in one pass. Effects of the main spindle speed, feed screw pitch and ceramic coating length of the roller on various milling characteristics such as white rice processing capacity, electric energy consumption, rice temperature increase, broken rice ratio, moisture reduction, outlet force and crack ratio increase were studied. The results are as follows. 1. The maximum white rice processing capacity and the lowest crack ratio increase, were obtained from a machine with specification: main spindle speed of 970rpm having a feed screw pitch of 19㎜. 2. The minimum electric energy consumption was obtained with the main spindle speeds of 900 and 970rpm respectively having a feed screw pitch of 19㎜. 3. The rice temperature was increased as the feed screw pitch decreased and the main spindle speed increased. 4. Broken rice ratio was relatively low with the range of 0.8∼1.3%. 5. Moisture content loss was with the range of 0.05∼0.4%. 6. The highest outlet force was 0.72kg$\_$f/ with 900rpm of the main spindle speed and 19㎜ of the feed screw pitch and the lowest outlet force was 0.18∼0.34kg$\_$f/ with 970rpm of the main spindle speed and 16㎜ of the feed screw pitch. 7. The optimum design conditions for the vertical small-scale milling machine were obtained at 970rpm of the main spindle speed, 19㎜ of the feed screw pitch and 20㎜ of the ceramics coating length.

  • PDF

예압과 냉각조건에 따른 고주파 모터 내장형 주축계의 열특성 (Thermal Characteristics of the High Frequency Motor Spindle according to the Bearing Preloads and Cooling Conditions)

  • 최대봉;김수태;정성훈;김진한;김용기
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.31-36
    • /
    • 2005
  • Use of the high frequency motor spindles are increasing for the high speed machine tools recently. The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball hearings. Thermal characteristics according to the bearing preload and spindle cooling are studied for the spindle with the oil mist lubrication and high frequency motor. Temperature distribution and thermal displacement according to the spindle speed, preload and flow rate are measured. Temperature distribution and thermal displacement of the high speed spindle system can be estimated reasonably by using the three dimensional model through the finite element method. The results of analysis are compared with the measured data. This study supports thermal optimization and find out more effective cooling condition. This paper show that the suitable preload and spindle cooling are very effective to minimize the thermal effect by the motor and ball bearings.

고속 주축의 진동 특성 향상을 위한 베어링의 위치 선정 (Selecting Position of Bearings to Improve Dynamic Characteristics of A High-speed Milling Spindle)

  • 임정숙;황영국;이원창;이춘만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools. to improve tire machining flexibility of machine. tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In the spindle system design, it is very important to improve modal characteristics, and modal analysis is performed in the first place. Therefore in this paper, on the assumption that supporting bearings of spindle was selected most suitable condition, analyzed dynamic characteristics of a high-speed spindle according to its position. Optimal design was applicated to select most suitable position of bearings. Considered tile mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows the natural frequency of 1st bending mode of spindle.

  • PDF

자기베어링 적용 공작기계용 고속 스핀들 개발 (Development of High Speed Spindle for Machine Tool with Magnetic Bearings)

  • 박철훈;함상용;홍두의;김준규
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.895-900
    • /
    • 2015
  • Most of spindles for machine tool are supported by ball bearings, and there are problems in the limits of high speed and high power as well as the cumbersome maintenance due to the short life time. In order to overcome these problems of the conventional spindles, the high speed spindle with magnetic bearings is developed in this study. Magnetic bearings for 60 000 r/min class high-speed spindle are designed, and high speed spindle with magnetic bearings are fabricated. Based on the running test up to 60 000 r/min, it is verified that the spindle is stably supported by the magnetic bearings, and the magnitude of the unbalance response at 60 000 r/min is less than $3{\mu}m$.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

모터분리형 초고속 머시닝센터 주축계의 열특성 해석 (Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC)

  • 김석일;권태균;나상준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

고속주축의 회전정밀도 성능평가에 관한 연구 (A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle)

  • 김종관;이중기
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF