• Title/Summary/Keyword: spindle assembly

Search Result 58, Processing Time 0.022 seconds

The primary cilium as a multiple cellular signaling scaffold in development and disease

  • Ko, Hyuk-Wan
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.427-432
    • /
    • 2012
  • Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates.

A Study on the Drilling Performance of the Assembly Machine for the an Aircraft's Main Wings (항공기 주익 조립 장비의 드릴링 성능에 관한 연구)

  • Hong, Seong-Min;Park, Dae-Hun;Han, Sung-Gil;Song, Chul-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, the manufacturing market for low-cost airlines has led to an increase in aircraft demand. Most processes in the production of these aircrafts are manual such as drilling, sealing, and swaging. A drilling and riveting machine is a numerical-control based equipment that automatically performs drilling, sealing, and swaging operations. The accuracy of the drilled holes and the exit burr length has a significant impact on the quality of the aircraft wing during assembly. This study was conducted to identify the conditions necessary to maintain a uniform quality by controlling the rotation speed of the spindle, which directly affects the hole diameter and the quality of the exit burr.

How Chromosome Mis-Segregation Leads to Cancer: Lessons from BubR1 Mouse Models

  • Lee, Hyunsook
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.713-718
    • /
    • 2014
  • Alteration in chromosome numbers and structures instigate and foster massive genetic instability. As Boveri has seen a hundred years ago (Boveri, 1914; 2008), aneuploidy is hall-mark of many cancers. However, whether aneuploidy is the cause or the result of cancer is still at debate. The molecular mechanism behind aneuploidy includes the chromosome mis-segregation in mitosis by the compromise of spindle assembly checkpoint (SAC). SAC is an elaborate network of proteins, which monitor that all chromosomes are bipolarly attached with the spindles. Therefore, the weakening of the SAC is the major reason for chromosome number instability, while complete compromise of SAC results in detrimental death, exemplified in natural abortion in embryonic stage. Here, I will review on the recent progress on the understanding of chromosome missegregation and cancer, based on the comparison of different mouse models of BubR1, the core component of SAC.

Development of the Automatic Fine Polishing System (경면 다듬질을 위한 자동화 장치 개발)

  • 박균명;장진희;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.389-394
    • /
    • 1993
  • Die making process is classified into design,manufacturing,polishing,assembly, and performance test. Die polishing is not a machining process by cutting edge of tool, but it is finishing by relative cutting movement under the surface contact between grinding particles and workpiece, and this process comprised 30~40% of total manufacturing hours. However, die polishing process is still performed by the skilled workers. Now a days, it is very difficult to secure skilled workers due to the hardworking environment and this situation will be getting worse in the future which has great difficulty of dies and molds industries.This process has the common problem on the elimination of tedious manual polishing among the tool making industries. Therefore this study is aimed at the development of an automatic polishing attachment which could be attached onthe spindle of CNC machine tool and controlled by the NC program data created by CAD/CAM system. As a result, this study will contribute the realization of automatic fine polishing process and improvement of quality level of dies and molds.

  • PDF

FE Analysis for Fundamental Air-cavity Resonant Frequency of Tire (타이어의 첫 번째 공기공동 공명에 관한 유한요소해석)

  • Kim, Yong-Woo;Bang, Sung-Huyn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.685-692
    • /
    • 2009
  • Vehicle interior noise is the results of numerous sources of excitation. One source involving tire pavement interaction is the tire cavity resonance and the forcing it provides to the vehicle spindle. Using a simplified model for the tire acoustic cavity system only, we formulated finite element equation to predict the fundamental acoustic cavity resonant characteristics inside tire-wheel assembly of undeformed and deformed tire. Combining the finite element analysis with experimental verification, we explained the acoustic characteristics theoretically. Especially, we have shown that the difference between the first two resonant frequencies increases as the deformation of deformed tire increases.

FE Analysis for Fundamental Air-Cavity Resonant Frequency of Tire (타이어의 첫 번째 공기공동 공명에 관한 유한요소해석)

  • Kim, Yong-Woo;Bang, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.551-556
    • /
    • 2009
  • Vehicle interior noise is the results of numerous sources of excitation. One source involving tire pavement interaction is the tire cavity resonance and the forcing it provides to the vehicle spindle. Using a simplified model for the tire acoustic cavity system only, we formulated finite element equation to predict the fundamental acoustic cavity resonant characteristics inside tire-wheel assembly of undeformed and deformed tire. Combining the finite element analysis with experimental verification, we explained the acoustic characteristics theoretically. Especially, we have shown that the difference between the first two resonant frequencies increases as the deformation of tire due to vertical load increases.

  • PDF

A study on Measuring of Motion Accuracy of NC Machine Tools(No. 2) - about Measuring of Linear Cycle Positioning Accuracy of Machining Center - (NC 공작기계의 운동정도 측정에 관한 연구(제2보) -머시닝 센터의 직선 사이클 위치결정정도 측정에 관하여-)

  • Kim, Yeong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.51-51
    • /
    • 1998
  • It is very important to test linear cycle positioning accuracy of Machining centers as it affect all other machines machined by them in industries. For example, if the linear positioning accuracy of each axes directions is bad, the size of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper, measuring systems are organized to measure linear displacements of table or spindle of machine center using laser interferometer, magnescale and tick pulses comming out from computer in order to get data at constant time intervals from the sensors. And each set of data gotten from test is expressed to a plots by computer treatment and the results of linear positioning error motion is estimated to numerics by statistical treatments.

Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses

  • Kim, Hyun-Soo;Fernandes, Gary;Lee, Chang-Woo
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.654-662
    • /
    • 2016
  • Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.

Ab ovo or de novo? Mechanisms of Centriole Duplication

  • Loncarek, Jadranka;Khodjakov, Alexey
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • The centrosome, an organelle comprising centrioles and associated pericentriolar material, is the major microtubule organizing center in animal cells. For the cell to form a bipolar mitotic spindle and ensure proper chromosome segregation at the end of each cell cycle, it is paramount that the cell contains two and only two centrosomes. Because the number of centrosomes in the cell is determined by the number of centrioles, cells have evolved elaborate mechanisms to control centriole biogenesis and to tightly coordinate this process with DNA replication. Here we review key proteins involved in centriole assembly, compare two major modes of centriole biogenesis, and discuss the mechanisms that ensure stringency of centriole number.

Comparison of Microtubule Distributions between Somatic Cell Nuclear Transfer and Parthenogenetic Porcine Embryos

  • Park, Joo-Hee;Kwon, Dae-JinK;Lee, Beom-Ki;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.33 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • The aim of this study was to examine the microtubule distributions of somatic cell nuclear transfer (SCNT) and parthenogenetic porcine embryos. Porcine SCNT embryos were produced by fusion of serum-starved fetal fibroblast cells with enucleated oocytes. Reconstituted and mature oocytes were activated by electric pulses combined with 6-dimethlyaminopurine treatment. SCNT and parthenogenetic embryos were cultured in vitro for 6 days. Microtubule assembly of embryos was examined by confocal microscopy 1 hr and 20 hr after fusion or activation, respectively. The proportions of embryos developed to the blastocyst stage were 25.7% and 30.4% in SCNT and parthenogenetic embryos, respectively. The frequency of embryos showing $\beta$-tubulins was 81.8% in parthenogenetic embryos, whereas 31.3% in SCNT embryos 1 hr after activation or fusion. The frequency of the embryos underwent normal mitotic phase was low in SCNT embryos (40.6%) compared to that of parthenogenetic ones (59.7%) 20 hr after fusion or activation (p<0.05). The rate of SCNT embryos with an abnormal mitosis pattern is about twice compared to that of parthenogenetic ones. The spindle assembly and its distribution of SCNT embryos in the first mitotic phase were not different from those of parthenogenetic ones. The result shows that although microtubule distribution of porcine SCNT embryos shortly after fusion is different from parthenogenetic embryos, and the frequency of abnormal mitosis 20 hr after fusion or activation is slightly increased in SCNT embryos, microtubule distributions at the first mitotic phase are similar in both SCNT and parthenogenetic embryos.