Browse > Article
http://dx.doi.org/10.1007/s10059-009-0017-z

Ab ovo or de novo? Mechanisms of Centriole Duplication  

Loncarek, Jadranka (Division of Translational Medicine, Wadsworth Center, New York State Department of Health)
Khodjakov, Alexey (Division of Translational Medicine, Wadsworth Center, New York State Department of Health)
Abstract
The centrosome, an organelle comprising centrioles and associated pericentriolar material, is the major microtubule organizing center in animal cells. For the cell to form a bipolar mitotic spindle and ensure proper chromosome segregation at the end of each cell cycle, it is paramount that the cell contains two and only two centrosomes. Because the number of centrosomes in the cell is determined by the number of centrioles, cells have evolved elaborate mechanisms to control centriole biogenesis and to tightly coordinate this process with DNA replication. Here we review key proteins involved in centriole assembly, compare two major modes of centriole biogenesis, and discuss the mechanisms that ensure stringency of centriole number.
Keywords
centriole; centrosome; duplication; de novo;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 23  (Related Records In Web of Science)
연도 인용수 순위
1 Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., and Kaldis, P. (2003). Cdk2 Knockout mice are viable. Curr. Biol. 13, 1775-1785   DOI   PUBMED   ScienceOn
2 Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., and Glover, D.M. (2005). Sak/Plk4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199-2207   DOI   PUBMED   ScienceOn
3 Blow, J.J., and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6, 476-486   DOI   PUBMED   ScienceOn
4 Bobinnec, Y., Khodjakov, A., Mir, L.M., Rieder, C.L., Edde, B., and Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575-1589   DOI   ScienceOn
5 Fisk, H.A., and Winey, M. (2001). The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106, 95-104   DOI   ScienceOn
6 Hinchcliffe, E.H., and Sluder, G. (2001b). Centrosome duplication: Three kinases come up a winner! Curr. Biol. 11, R698-R701   DOI   ScienceOn
7 Hook, S.S., Lin, J.J., and Dutta, A. (2007). Mechanisms to control re-replication and implications for cancer. Curr. Opin. Cell Biol. 19, 663-671   DOI   ScienceOn
8 Kemp, C.A., Kopish, K.R., Zipperlen, P., Ahringer, J., and O'Connell, K.F. (2004). Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511-523   DOI   ScienceOn
9 Khodjakov, A., Rieder, C.L., Sluder, G., Cassels, G., Sibon, O., and Wang, C.L. (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171-1181   DOI   ScienceOn
10 Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y.D., and Nigg, E.A. (2007). Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190-202   DOI   ScienceOn
11 Mahowald, A.P., Caulton, J.H., Edwards, M.K., and Floyd, A.D. (1979). Loss of centrioles and polyploidization in follicle cells of Drosophila melanogaster. Exp. Cell Res. 118, 404-410   DOI   ScienceOn
12 Manandhar, G., Schatten, H., and Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72, 2-13   DOI   ScienceOn
13 Meraldi, P., Lukas, J., Fry, A.M., Bartek, J., and Nigg, E.A. (1999). Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1, 88-93   DOI   PUBMED   ScienceOn
14 Pelletier, L., Ozlu, N., Hannak, E., Cowan, C., Habermann, B., Ruer, M., Muller-Reichert, T., and Hyman, A.A. (2004). The Caenor-habditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863-873   DOI   PUBMED   ScienceOn
15 Piel, M., Nordberg, J., Euteneuer, U., and Bornens, M. (2001). Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550-1553   DOI   PUBMED
16 Salisbury, J.L., Suino, K.M., Busby, R., and Springett, M. (2002). Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287-1292   DOI   ScienceOn
17 Strnad, P., Leidel, S., Vinogradova, T., Euteneuer, U., Khodjakov, A., and Gonczy, P. (2007). Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13, 203-213   DOI   PUBMED   ScienceOn
18 Tsou, M.F.B., and Stearns, T. (2006a). Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74-78   DOI   PUBMED   ScienceOn
19 Vladar, E.K., and Stearns, T. (2007). Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 178, 31-42   DOI   PUBMED   ScienceOn
20 Wong, C., and Stearns, T. (2003). Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 5, 539-544   DOI   PUBMED   ScienceOn
21 Balczon, R., Bao, L., Zimmer, W.E., Brown, K., Zinkowski, R.P., and Brinkley, B.R. (1995). Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105-115   DOI   PUBMED   ScienceOn
22 Hiraki, M., Nakazawa, Y., Kamiya, R., and Hirono, M. (2007). Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol. 17, 1778-1783   DOI   PUBMED   ScienceOn
23 Mazia D. (1987). The multiplicity of the mitotic centers and the timecourse of their duplication and separation. Biophys. Biochem. Cytol. 7, 1-20
24 Moritz, M., Braunfeld, M.B., Guenebaut, V., Heuser, J., and Agard, D.A. (2000). Structure of the $\gamma$-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365-370   DOI   PUBMED   ScienceOn
25 Kuriyama, R., and Borisy, G.G. (1983). Cytasters induced within unfertilized sea-urchin eggs. J. Cell Sci. 61, 175-189   PUBMED
26 Matsumoto, Y., Hayashi, K., and Nishida, E. (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429-432   DOI   ScienceOn
27 O' Connell, K.F., Caron, C., Kopish, K.R., Hurd, D.D., Kemphues, K.J., Li, Y., and White, J.G. (2001). The C. elegans Zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547-558   DOI   ScienceOn
28 O'Toole, E.T., Giddings, T.H., McIntosh, J.R., and Dutcher, S.K. (2003). Three-dimensional organization of basal bodies from wild-type and $\delta$-tubulin deletion strains of Chlamydomonas reingardtii. Mol. Biol. Cell 14, 2999-3012   DOI   PUBMED   ScienceOn
29 Szollosy, D., Calarco, P., and Donahue, R.P. (1972). Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521-541
30 Chen, Z., Indjeian, V.B., McManus, M., Wang, L., and Dynlacht, B.D. (2002). CP110, a cell cycle-dependent Cdk substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339-350   DOI   ScienceOn
31 Dutcher, S.K. (2007). Finding treasures in frozen cells: new centriole intermediates. Bioessays 29, 630-634   DOI   PUBMED   ScienceOn
32 Pelletier, L., Toole, E., Schwager, A., Hyman, A.A., and Muller-Reichert, T. (2006). Centriole assembly in Caenorhabditis elegans. Nature 444, 619-623   DOI   ScienceOn
33 Winkles, J.A., and Alberts, G.F. (2005). Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24, 260-266   DOI   ScienceOn
34 Sluder, G., and Begg, D.A. (1985). Experimental analysis of the reproduction of spindle poles. J. Cell Sci. 76, 35-51   PUBMED
35 Uetake, Y., Loncarek, J., Nordberg, J.J., English, C.N., La Terra, S., Khodjakov, A., and Sluder, G. (2007). Cell cycle progression and do novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176, 173-182   DOI   PUBMED   ScienceOn
36 Dix, C.I., and Raff, J.W. (2007). Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr. Biol. 17, 1759-1764   DOI   PUBMED   ScienceOn
37 Duensing, S., and Munger, K. (2003). Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77, 12331-12335   DOI   PUBMED
38 Fuller, S.D., Gowen, B.E., Reinsch, S., Sawyer, A., Buendia, B., Wepf, R., and Karsenti, E. (1995). The core of the mammalian centriole contains $\gamma$-tubulin. Curr. Biol. 5, 1384-1393   DOI   ScienceOn
39 Marshall, W.F. (2008). The cell biological basis of ciliary disease. J. Cell Biol. 180, 17-21   DOI   ScienceOn
40 Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M., and Bettencourt-Dias, M. (2007a). Revisiting the role of the mother centriole in centriole biogenesis. Science 316, 1046-1050   DOI   PUBMED   ScienceOn
41 Vorobjev, I.A., and Chentsov, Y. (1982). Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938-949   DOI
42 Dippell, R. (1968). The development of basal bodies in Paramecium. Proc. Natl. Acad. Sci. USA 61, 461-468   DOI   ScienceOn
43 Matsumoto, Y., and Maller, J.L. (2004). A centrosomal localization signal in cyclin E required for cdk2-independent S phase entry. Science 306, 885-888   DOI   PUBMED   ScienceOn
44 Moudjou, M., Bordes, N., Paintrand, M., and Bornens, M. (1996). $\gamma$-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell Sci. 109, 875-887   PUBMED
45 Tsou, M.F.B., and Stearns, T. (2006b). Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947-951   DOI   ScienceOn
46 Keryer, G., Ris, H., and Borisy, G.G. (1984). Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J. Cell Biol. 98, 2222-2229   DOI   PUBMED   ScienceOn
47 Nakazawa, Y., Hiraki, M., Kamiya, R., and Hirono, M. (2007). SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169-2174   DOI   PUBMED   ScienceOn
48 Dammermann, A., Maddox, P.S., Desai, A., and Oegema, K. (2008). SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the $\gamma$-tubulin-mediated addition of centriolar microtubules. J. Cell Biol. 180, 771-785   DOI   PUBMED   ScienceOn
49 Nigg, E.A. (2007). Centriole duplication: of rules and licenses. Trends Cell Biol. 17, 215-221   DOI   ScienceOn
50 Alvey, P.L. (1985). An investigation of the centriole cycle using 3T3 and CHO cells. J. Cell Sci. 78, 147-162
51 Bettencourt-Dias, M., and Carvalho-Santos, Z. (2008). Double life of centrioles: CP110 in the spotlight. Trends. Cell Biol. 18, 8-11   DOI   ScienceOn
52 Delattre, M., and Gonczy, P. (2004). The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619-1630   DOI   PUBMED   ScienceOn
53 Dirksen, E.R. (1991). Centriole and basal body formation during ciliogenesis revisited. Biol. Cell 72, 31-38   DOI   ScienceOn
54 Riparbelli, M.G., and Callaini, G. (2003). Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev. Biol. 260, 298-313   DOI   ScienceOn
55 Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J.E., Bhattacharya, S., Rideout, W.M., Bronson, R.T., Gardner, H., and Sicinski, P. (2003). Cyclin E ablation in the mouse. Cell 114, 431-443   DOI   ScienceOn
56 Dammermann, A., Muller-Reichert, T., Pelletier, L., Habermann, B., Desai, A., and Oegema, K. (2004). Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815-829   DOI   PUBMED   ScienceOn
57 Kasbek, C., Yang, C.H., Yusof, A.M., Chapman, H.M., Winey, M., and Fisk, H.A. (2007). Preventing the degradation of Mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol. Biol. Cell 18, 4457-4469   DOI   PUBMED   ScienceOn
58 La Terra, S., English, C.N., Hergert, P., McEwen, B.F., Sluder, G., and Khodjakov, A. (2005). The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713-722   DOI   ScienceOn
59 Leidel, S., Delattre, M., Cerutti, L., Baumer, K., and Gonczy, P. (2005). SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7, 115-125   DOI   ScienceOn
60 Marshall, W.F. (2007). Centriole assembly: the origin of nine-ness. Cur. Biol. 17, R1057-R1059   DOI   PUBMED   ScienceOn
61 Jones, M.H., and Winey, M. (2006). Centrosome duplication: is asymmetry the clue? Curr. Biol. 16, R808-810   DOI   PUBMED   ScienceOn
62 Stucke, V.M., Sillje, H.H., Arnaud, L., and Nigg, E.A. (2002). Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723-1732   DOI   ScienceOn
63 Hinchcliffe, E.H., and Sluder, G. (2001a). It takes two to tango: understanding how centrosome duplication is regulated through-hout the cell cycle. Genes Dev. 15, 1167-1181   DOI   ScienceOn
64 Kuriyama, R., and Borisy, G.G. (1981). Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814-821   DOI   PUBMED   ScienceOn
65 Silflow, C.D., Liu, B., LaVoie, M., Richardson, E.A., and Palevitz, B.A. (1999). $\gamma$-Tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. Cell Motil. Cytoskeleton 42, 285-297   DOI   ScienceOn
66 Spektor, A., Tsang, W.Y., Khoo, D., and Dynlacht, B.D. (2007). Cep97 and CP110 Suppress a cilia assembly program. Cell 130, 678-690   DOI   PUBMED   ScienceOn
67 Okuda, M., Horn, H.F., Tarapore, P., Tokuyama, Y., Smulian, A.G., Chan, P.K., Knudsen, E.S., Hofmann, I.A., Snyder, J.D., Bove, K.E., et al. (2000). Nucleophosmin/B23 is a target of CDK2/Cyclin E in centrosome duplication. Cell 103, 127-140   DOI   ScienceOn
68 Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A., and Duensing, S. (2007). Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26, 6280-6288   DOI   ScienceOn
69 Peel, N., Stevens, N.R., Basto, R., and Raff, J.W. (2007). Overex-pressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834-843   DOI   PUBMED   ScienceOn
70 Winey, M., Goetsch, L., Baum, P., and Byers, B. (1991). Mps1 and Mps2: novel yeast genes defining distinct steps of spindle pole body duplication. J. Cell Biol. 114, 745-754   DOI   PUBMED   ScienceOn
71 Zhu, F., Lawo, S., Bird, A., Pinchev, D., Ralph, A., Richter, C., Muller-Reichert, T., Kittler, R., Hyman, A.A., and Pelletier, L. (2008). The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136-141   DOI   PUBMED   ScienceOn
72 Rodrigues-Martins, A., Bettencourt-Dias, M.n., Riparbelli, M., Ferreira, C., Ferreira, I., Callaini, G., and Glover, D.M. (2007b). DSAS-6 Organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 17, 1465-1472   DOI   ScienceOn
73 Sorokin, S.P. (1968). Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207-230   PUBMED
74 Szollosi, D., and Ozil, J.P. (1991). De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol. Cell 72, 61-66   DOI   ScienceOn
75 Delattre, M., Canard, C., and Gonczy, P. (2006). Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844-1849   DOI   PUBMED   ScienceOn
76 Fisk, H.A., Mattison, C.P., and Winey, M. (2003). Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc. Natl. Acad. Sci. USA 100, 14875-14880   DOI   ScienceOn
77 Strnad, P., and Gonczy, P. (2008). Mechanisms of procentriole formation. Trends. Cell Biol. 18, 389-396   DOI   ScienceOn
78 Dawe, H.R., Farr, H., and Gull, K. (2007). Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci 120, 7-15   DOI   PUBMED   ScienceOn
79 Tokuyama, Y., Horn, H.F., Kawamura, K., Tarapore, P., and Fukasawa, K. (2001). Specific phosphorylation of nucleo-phosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 276, 21529-21537   DOI   PUBMED   ScienceOn
80 Young, A., Dictenberg, J.B., Purohit, A., Tuft, R., and Doxsey, S.J. (2000). Cytoplasmic dynein-mediated assembly of pericentrin and $\gamma$-tubulin onto centrosomes. Mol. Biol. Cell 11, 2047-2056   DOI   PUBMED
81 Bisgrove, B.W., and Yost, H.J. (2006). The roles of cilia in developmental disorders and disease. Development 133, 4131-4143   DOI   ScienceOn
82 Chretien, D., Buendia, B., Fuller, S.D., and Karsenti, E. (1997). Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117-133   DOI   ScienceOn
83 Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S., and Hyman, A. A. (2003). SAS-4 Is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575-587   DOI   ScienceOn
84 Loncarek, J., Hergert, P., Magidson, V., and Khodjakov, A. (2008). Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322-328   DOI   ScienceOn