• 제목/요약/키워드: spinal load

검색결과 42건 처리시간 0.022초

몸통 비틀림 운동을 고려한 쪼그려 앉은 작업자의 요추부 작업부담 평가 (Bio-mechanical Evaluation of Squatting Posture with Asymmetric Trunk Motion)

  • 임대섭;김영진;이경숙;문정환
    • Journal of Biosystems Engineering
    • /
    • 제36권1호
    • /
    • pp.58-67
    • /
    • 2011
  • A high prevalence of protected horiculture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of harvesting. The purpose of this study is to evaluate quantitatively the spinal load of worker harvesting with squatting posture to predict and prevent musculo-skeletal risks. Spinal load in Squatting posture with asymmetric trunk motion were analyzed. Before evaluating spinal load on harvesting worker by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While worker reached arms (20%, 40%, 70% arm reach) with various asymmetric trunk motion (0, 45, 90 degree), their spinal loads (extension, twisting and lateral bending moment) were evaluated. In case of extensor moment at lumbo-sacral joint, the more the arm reach got increased, the moment increased. however, in case of twisting moment and lateral bending moment, the more both arm reach and asymmetric trunk motion got increased, the moment increased significantly. The findings of this study suggest that it need to be determine the spinal load, especially twisting, lateral bending moment in evaluating musculo-skeletal workload in squatting posture.

인체모델을 이용한 농작업자의 밀기 작업시 요추부 생체 역학적 평가 (Bio-mechanical Analysis on the Lower Back using Human Model during Pushing the Manual Vehicles)

  • 임대섭;이경숙;최안렬;김영진;문정환
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.286-294
    • /
    • 2009
  • A high prevalence of protected horticulture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of product transporting. The purpose of this study is to evaluate quantitatively the spinal load of operator using manual vehicles to predict and prevent musculo-skeletal risks. Spinal load in operators using 4 kinds of manual vehicle were analyzed. Before evaluating spinal load on operator using the manual vehicles by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While Operators pushed the manual vehicles(wheelbarrow, Trolley, 2 wheel cart, and 4 wheel cart) contained loads that were 0 N and 800 N, their spinal loads(compression force, shear force) were evaluated. The compression force demonstrated under the NIOSH action limits - 3410N - for all 4 manual vehicle's operators(McGill 1997; Marras 2000). However, the lateral shear force demonstrated over the University of Waterloo - 500N - for all 3 manual vehicle's operators except 4Wheel cart (Yingline and McGill, 1999). Therefore, operators have risks in prevalence of the musculo-skeletal disorders due to shear force. The findings of this study suggest that it need to be determine the spinal load, especially lateral shear force in designing the manual vehicles in the future.

The Effects of Ramp Gradients and Pushing-Pulling Techniques on Lumbar Spinal Load in Healthy Workers

  • Pinupong, Chalearmpong;Jalayondeja, Wattana;Mekhora, Keerin;Bhuanantanondh, Petcharatana;Jalayondeja, Chutima
    • Safety and Health at Work
    • /
    • 제11권3호
    • /
    • pp.307-313
    • /
    • 2020
  • Background: Many tasks in industrial and health care setting are involved with pushing and pulling tasks up or down on a ramp. An efficient method of moving cart which reduces the risk of low back pain should be concerned. This study aimed to investigate the effects of handling types (HTs) and slope on lumbar spinal load during moving a cart on a ramp. We conducted a 2 × 2 × 4 factorial design with three main factors: 2 HTs, 2 handling directions of moving a cart and 4 degrees of ramp slope. Methods: Thirty healthy male workers performed 14 tasks consist of moving a cart up and down on the ramp of 0°, 10°, 15°, and 20° degrees with pushing and pulling methods. Joint angles from a 3D motion capture system combined with subject height, body weight, and hand forces were used to calculate the spinal load by the 3DSSPP program. Results: Our results showed significant effect of HT, handling directions and slope on compression and shear force of the lumbar spine (p < 0.001). When the ramp gradient increased, the L4/5 compression forces increased in both pushing and pulling (p < 0.001) Shear forces increased in pulling and decreased in pushing in all tasks. At high slopes, pulling generated more compression and shear forces than that of pushing (p < 0.01). Conclusion: Using the appropriate technique of moving a cart on the ramp can reduce the risk of high spinal load, and the pushing is therefore recommended for moving a cart up/down on ramp gradients.

Load Sharing Mechanism Across Graft-Bone Interface in Static Cervical Locking Plate Fixation

  • Han, In-Ho;Kuh, Sung-Uk;Chin, Dong-Kyu;Jin, Byung-Ho;Cho, Yang-Eun;Kim, Keun-Su
    • Journal of Korean Neurosurgical Society
    • /
    • 제45권4호
    • /
    • pp.213-218
    • /
    • 2009
  • Objective : This study is a retrospective clinical study over more than 4 years of follow up to understand the mechanism of load sharing across the graft-bone interface in the static locking plate (SLP) fixation compared with non-locking plate (NLP). Methods : Orion locking plates and Top non-locking plates were used for SLP fixation in 29 patients and NLP fixation in 24 patients, respectively. Successful interbody fusion was estimated by dynamic X-ray films. The checking parameters were as follows : screw angle (SA) between upper and lower screw, anterior and posterior height of fusion segment between upper and lower endplate (AH & PH), and upper and lower distance from vertebral endplate to the end of plate (UD & LD). Each follow-up value of AH and PH were compared to initial values. Contributions of upper and lower collapse to whole segment collapse were estimated. Results : Successful intervertebral bone fusion rate was 100% in the SLP group and 92% in the NLP group. The follow-up mean value of SA in SLP group was not significantly changed compared with initial value, but follow-up mean value of SA in NLP group decreased more than those in SLP group (p=0.0067). Statistical analysis did not show a significant difference in the change in AH and PH between SLP and NLP groups (p>0.05). Follow-up AH of NLP group showed more collapse than PH of same group (p=0.04). The upper portion of the vertebral body collapsed more than the lower portion in the SLP fixation (p=0.00058). Conclusion : The fused segments with SLP had successful bone fusion without change in initial screw angle, which was not observed in NLP fixation. It suggests that there was enough load sharing across bone-graft interface in SLP fixation.

노인 퇴행성디스크 환자의 안정화운동이 척추불안정과 피로도에 미치는 영향 (The Effects of Segmental Instability and Muscle Fatigue after Applying Sabilization Exercise Program In Degenerated Disc Disease Patients of Aged)

  • 김희라
    • 대한정형도수물리치료학회지
    • /
    • 제13권2호
    • /
    • pp.12-20
    • /
    • 2007
  • The purpose of this study was designed to find out the effectiveness of vertebral segment instability, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. In this study, the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test(Matthiass Test) by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. The results of the present study were as follows: 1. Instability test of lumbar vertebra segment is 2 type differential angle test between vertebrae segment and loading test of spine(matthiass) by Spinal Mouse. It appeared to improve stability of segments in sagittal plane after applying program. So lumbar spine curve increased lordosis toward anterior and was improved of the lumbar spine flexibility in flexion and extension. Specially, in matthiass test, (-) value was increased between lumbar vertebra segment when was the load on spine. And so applying stability improved after program. 2. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine vertebra segments stabilization. Spine instability patients will have a risk when in lifting a load or working with slight flexion posture during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

노인 퇴행성디스크 환자의 안정화운동이 척추불안정과 피로도에 미치는 영향 (The Effects of Segmental Instability and Muscle Fatigue after Stabilization Exercise Program in Degenerated Disc Disease Patients of Aged)

  • 김희라
    • 대한물리치료과학회지
    • /
    • 제13권4호
    • /
    • pp.7-16
    • /
    • 2006
  • The purpose of this study was designed to find out the effectiveness of vertebral segment instability, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. In this study, the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test(Matthiass Test) by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. The results of the present study were as follows: 1. Instability test of lumbar vertebra segment is 2 type differential angle test between vertebrae segment and loading test of spine(matthiass) by Spinal Mouse. It appeared to improve stability of segments in sagittal plane after program. So lumbar spine curve increased lordosis toward anterior and was improved of the lumbar spine flexibility in flexion and extension. Specially, in matthiass test, ( - ) value was increased between lumbar vertebra segment when was the load on spine. And so stability improved after program. 2. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine vertebra segments stabilization. Spine instability patients will have a risk when in lifting a load or working with slight flexion posture during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

Restoration of Sagittal Balance in Spinal Deformity Surgery

  • Makhni, Melvin C.;Shillingford, Jamal N.;Laratta, Joseph L.;Hyun, Seung-Jae;Kim, Yongjung J.
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권2호
    • /
    • pp.167-179
    • /
    • 2018
  • The prevalence of patients with adult spinal deformity (ASD) has been reported as high as 68%. ASD often leads to significant pain and disability. Recent emphasis has been placed on sagittal plane balance and restoring normal sagittal alignment with regards to the three dimensional deformity of ASD. Optimal sagittal alignment has been known to increase spinal biomechanical efficiency, reduce energy expenditure by maintaining a stable posture with improved load absorption, influence better bony union, and help to decelerate adjacent segment deterioration. Increasingly positive sagittal imbalance has been shown to correlate with poor functional outcome and poor self-image along with poor psychological function. Compensatory mechanisms attempt to maintain sagittal balance through pelvic rotation, alterations in lumbar lordosis as well as knee and ankle flexion at the cost of increased energy expenditure. Restoring normal spinopelvic alignment is paramount to the treatment of complex spinal deformity with sagittal imbalance. Posterior osteotomies including posterior column osteotomies, pedicle subtraction osteotomies, and posterior vertebral column resection, as well anterior column support are well known to improve sagittal alignment. Understanding of whole spinal alignment and dynamics of spinopelvic alignment is essential to restore sagittal balance while minimizing the risk of developing sagittal decompensation after surgical intervention.

척추의 3차원 수학적 척추 모델 개발 (Developement of Three-Dimensional Mathematical Spinal Model)

  • 한정수;안태정;이태희
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권2호
    • /
    • pp.189-201
    • /
    • 2000
  • Mechanical factors in the human body are considered to play a dominant role in low back problems. Various spinal structures. including muscles, act in unison to resist the external load. An estimation of the muscle forces in this structure requires a knowledge of the orientation, location and area of cross-section of the muscles to complete the formulation of a truly three-dimensional mathematical model of the spine. The geometric parameters which are calculated were the line of action, the centroid and physiologic area of cross-section of each muscle as a function of the spinal level. This geometric data were obtained from CT scans of 11 subjects participating in this study.

  • PDF

Clinical Analysis of Video-assisted Thoracoscopic Spinal Surgery in the Thoracic or Thoracolumbar Spinal Pathologies

  • Kim, Sung-Jin;Sohn, Moon-Jun;Ryoo, Ji-Yoon;Kim, Yeon-Soo;Whang, Choong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권4호
    • /
    • pp.293-299
    • /
    • 2007
  • Objective : Thoracoscopic spinal surgery provides minimally invasive approaches for effective vertebral decompression and reconstruction of the thoracic and thoracolumbar spine, while surgery related morbidity can be significantly lowered. This study analyzes clinical results of thoracoscopic spinal surgery performed at our institute. Methods : Twenty consecutive patients underwent video-assisted thoracosopic surgery (VATS) to treat various thoracic and thoracolumbar pathologies from April 2000 to July 2006. The lesions consisted of spinal trauma (13 cases), thoracic disc herniation (4 cases), tuberculous spondylitis (1 case), post-operative thoracolumbar kyphosis (1 case) and thoracic tumor (1 case). The level of operation included upper thoracic lesions (3 cases), midthoracic lesions (6 cases) and thoracolumbar lesions (11 cases). We classified the procedure into three groups: stand-alone thoracoscopic discectomy (3 cases), thoracoscopic fusion (11 cases) and video assisted mini-thoracotomy (6 cases). Results : Analysis on the Frankel performance scale in spinal trauma patients (13 cases), showed a total of 7 patients who had neurological impairment preoperatively : Grade D (2 cases), Grade C (2 cases), Grade B (1 case), and Grade A (2 cases). Four patients were neurologically improved postoperatively, two patients were improved from C to E, one improved from grade D to E and one improved from grade B to grade D. The preoperative Cobb's and kyphotic angle were measured in spinal trauma patients and were $18.9{\pm}4.4^{\circ}$ and $18.8{\pm}4.6^{\circ}$, respectively. Postoperatively, the angles showed statistically significant improvement, $15.1{\pm}3.7^{\circ}$ and $11.3{\pm}2.4^{\circ}$, respectively(P<0.001). Conclusion : Although VATS requires a steep learning curve, it is an effective and minimally invasive procedure which provides biomechanical stability in terms of anterior column decompression and reconstruction for anterior load bearing, and preservation of intercostal muscles and diaphragm.

The Changes in Range of Motion after a Lumbar Spinal Arthroplasty with Charite$^{TM}$ in the Human Cadaveric Spine under Physiologic Compressive Follower Preload: A Comparative Study between Load Control Protocol and Hybrid Protocol

  • Kim, Se-Hoon;Chang, Ung-Kyu;Chang, Jae-Chil;Chun, Kwon-Soo;Lim, T. Jesse;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권2호
    • /
    • pp.144-151
    • /
    • 2009
  • Objective: To compare two testing protocols for evaluating range of motion (ROM) changes in the preloaded cadaveric spines implanted with a mobile core type Charite$^{TM}$ lumbar artificial disc. Methods: Using five human cadaveric lumbosacral spines (L2-S2), baseline ROMs were measured with a bending moment of 8 Nm for all motion modes (flexion/extension, lateral bending, and axial rotation) in intact spine. The ROM was tracked using a video-based motion-capturing system. After the Charite$^{TM}$ disc was implanted at the L4-L5 level, the measurement was repeated using two different methods: 1) loading up to 8 Nm with the compressive follower preload as in testing the intact spine (Load control protocol), 2) loading in displacement control until the total ROM of L2-S2 matches that when the intact spine was loaded under load control (Hybrid protocol). The comparison between the data of each protocol was performed. Results: The ROMs of the L4-L5 arthroplasty level were increased in all test modalities (p < 0.05 in bending and rotation) under both load and hybrid protocols. At the adjacent segments, the ROMs were increased in all modes except flexion under load control protocol. Under hybrid protocol, the adjacent segments demonstrated decreased ROMs in all modalities except extension at the inferior segment. Statistical significance between load and hybrid protocols was observed during bending and rotation at the operative and adjacent levels (p< 0.05). Conclusion: In hybrid protocol, the Charite$^{TM}$ disc provided a relatively better restoration of ROM, than in the load control protocol, reproducing clinical observations in terms of motion following surgery.