• Title/Summary/Keyword: spin-structure

Search Result 727, Processing Time 0.027 seconds

Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application (신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용)

  • Lee, Jin-Young;Han, Song-Yi;Nah, Yoon-Chae;Park, Jongwoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.

A Brief Investigation on the Performance Variation and Shelf Lifetime in Polymer:Nonfullerene Solar Cells

  • Lee, Sooyong;Kim, Hwajeong;Lee, Chulyeon;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 2019
  • Polymer:nonfullerene solar cells with an inverted-type device structure were fabricated by employing the bulk heterojunction (BHJ) active layers, which are composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). The BHJ layers were formed on a pre-patterned indium-tin oxide (ITO)-coated glass substrate by spin-coating using the blend solutions of PBDB-T and IT-M. The solar cell performances were investigated with respect to the cell position on the ITO-glass substrates. In addition, the short-term shelf lifetime of solar cells was tested by storing the PBDB-T:IT-M solar cells in a glovebox filled with inert gas. The results showed that the performance of solar cells was relatively higher for the cells close to the center of substrates, which was maintained even after storage for 24 h. In particular, the PCE of PBDB-T:IT-M solar cells was marginally decreased after storage for 24 h owing to the slightly reduced fill factor, even though the open circuit voltage was unchanged after 24 h.

Fabrication of Ultra-Small Multi-Layer Piezoelectric Vibrational Device Using P(VDF-TrFE-CFE) (P(VDF-TrFE-CFE)를 이용한 초소형 압전 적층형 진동 출력 소자의 제작)

  • Cho, Seongwoo;Glasser, Melodie;Kim, Jaegyu;Ryu, Jeongjae;Kim, Yunjeong;Kim, Hyejin;Park, Kang-Ho;Hong, Seungbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.157-160
    • /
    • 2019
  • P(VDF-TrFE-CFE) (Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)), which exhibits a high electrostriction of about 7%, can transmit tactile output as vibration or displacement. In this study, we investigated the applicability of P(VDF-TrFE-CFE) to wearable piezoelectric actuators. The P(VDF-TrFE-CFE) layers were deposited through spin-coating, and interspaced with patterned Ag electrodes to fabricate a two-layer $3.5mm{\times}3.5mm$ device. This layered structure was designed and fabricated to increase the output and displacement of the actuator at low driving voltages. In addition, a laser vibrometer and piezoelectric force microscope were used to analyze the device's vibration characteristics over the range of ~200~4,200 Hz. The on-off characteristics were confirmed at a frequency of 40 Hz.

Preparation and Characterization of Ordered Perovskite (CaLa) (MgMo) $_6$

  • Choy, Jin-Ho;Hong, Seung-Tae;Suh, Hyeong-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.345-349
    • /
    • 1988
  • The polycrystalline powder of (CaLa) (MgMo)$O_6$ has been prepared at $1350^{\circ}C$ in $H_2/H_2O$ and $N_2$ flowing atmosphere. The powder X-ray diffraction pattern indicates that (CaLa) (MgMo)$O_6$ has a monoclinic perovskite structure with the lattice constants $a_0=b_0=7.901(1){\AA}$, $c =7.875(1){\AA}\;and\;{\gamma}=89^{\circ}$16'(1'), which can be reduced to orthorhombic unit cell, a = 5.551(1) ${\AA}$, b = 5.622(1) ${\AA}$ and c = 7.875(1) ${\AA}$. The infrared spectrum shows two strong absorption bands with their maxima at 590($ν_3$) and 380($ν_4$) cm, which are attributed to $2T_{1u}$ modes indicating the existence of highly charged molybdenum octahedron $MoO_6$ in the crystal lattice. According to the magnetic susceptibility measurement, the compound follows the Curie-Weiss law below room temperature with the effective magnetic moment 1.83(1)$_{{\mu}B}$, which is well consistent with that of spin only value (1.73 $_{\mu}_B$) for $Mo^{5+}$ with $4d^1$-electronic configuration within the limit of experimental error. From the thermogravimetric analysis, it has been confirmed that (CaLa) (MgMo)$O_6$ decomposes gradually into $CaMoO_4,\;MoO_3,\;MgO,\;La_2O_3$ and unidentified phases due to the oxidation of $Mo^{5+}$ to $Mo^{6+}$.

Double magnetic entropy change peaks and high refrigerant capacity in Gd1-xHoxNi compounds in the melt-spun form

  • Jiang, Jun-fan;Ying, Hao;Feng, Tang-fu;Sun, Ren-bing;Li, Xie;Wang, Fang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1605-1608
    • /
    • 2018
  • $Gd_{1-x}Ho_xNi$ melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature ($T_C$) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from $T_C$, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (${\Delta}S_M$) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ${\Delta}S_M$ around $T_C$ is almost same. The other maximum of ${\Delta}S_M$ around SRO transition, however, had significantly positive relationship with x. It reached a maximum about $8.2J\;kg^{-1}\;K^{-1}$ for x = 0.8. Thus double large ${\Delta}S_M$ peaks were obtained in $Gd_{1-x}Ho_xNi$ melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of $622J\;kg^{-1}$ for x = 0.6. $Gd_{1-x}Ho_xNi$ ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.

Micro-LED Mass Transfer using a Vacuum Chuck (진공 척을 이용한 마이크로 LED 대량 전사 공정 개발)

  • Kim, Injoo;Kim, Yonghwa;Cho, Younghak;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2022
  • Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

Electrical Properties of TiN/TiO2/FTO Resistive Random-Access Memory Based on Peroxo Titanium Complex Sol Solution by Heat Treatment (열처리에 따른 Peroxo Titanium Complex 졸 용액 기반 TiN/TiO2/FTO Resistive Random-Access Memory의 전기적 특성)

  • Yim, Hyeonmin;Lee, Jinho;Kim, Won Jin;Oh, Seung-Hwan;Seo, Dong Hyeok;Lee, Donghee;Kim, Ryun Na;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.384-390
    • /
    • 2022
  • A spin coating process for RRAM, which is a TiN/TiO2/FTO structure based on a PTC sol solution, was developed in this laboratory, a method which enables low-temperature and eco-friendly manufacturing. The RRAM corresponds to an OxRAM that operates through the formation and extinction of conductive filaments. Heat treatment was selected as a method of controlling oxygen vacancy (VO), a major factor of the conductive filament. It was carried out at 100 ℃ under moisture removal conditions and at 300 ℃ and 500 ℃ for excellent phase stability. XRD analysis confirmed the anatase phase in the thin film increased as the heat treatment increased, and the Ti3+ and OH- groups were observed to decrease in the XPS analysis. In the I-V analysis, the device at 100 ℃ showed a low primary SET voltage of 5.1 V and a high ON/OFF ratio of 104. The double-logarithmic plot of the I-V curve confirmed the device at 100 ℃ required a low operating voltage. As a result, the 100 ℃ heat treatment conditions were suitable for the low voltage driving and high ON/OFF ratio of TiN/TiO2/FTO RRAM devices and these results suggest that the operating voltage and ON/OFF ratio required for OxRAM devices used in various fields under specific heat treatment conditions can be compromised.

Properties of Photocurrent and Growth of $CuInSe_2$ single crystal thin film ($CuInSe_2$ 단결정 박막 성장과 광전류 특성)

  • S.H. You;K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.83-83
    • /
    • 2003
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are 9.62$\times$10$^{16}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10 K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 7 meV and 5.9 meV, respectivity. By Haynes rule, an activation energy of impurity was 59 meV.

  • PDF

Magnetic Properties of $ThMn_{12}-type$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$>$Ti_{1.2}Mo_{0.1}$ ($ThMn_{12}$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$의 미세구조 및 자기적 성질 연구)

  • 안성용;이승화;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1997
  • We have studied crystallographic and magnetic properties of $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ by Mossbauer spectroscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ has pure a single phase, whereas $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha$-Fe, conformed with X-ray diffractometry and Mossbauer measurements. The $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ has a $ThMn_{12}-type$ tetragonal structure with $a_0=8.637{\AA}$ and $c_0=4.807{\AA}$. The Curie temperature ($T_c$) is 600 K from the result of Mossbauer measurement performed at various temperatures ranging from 13 to 800 K. Each spectrum of below $T_c$ is fitted with five subspectra of Fe sites in the structure ($8i_1, 8i_2, 8j_2, 8j_1, 8f$). The area fractions of the subspectra at room temperature are 12.3%, 14.0%, 21.0% 11.8%, 40.9%, respectively. Magnetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, an magnetic moment observed at about 160 K in $NdFe_ {10.7} Ti_{1.2}Mo_{0.1}$ are attributed to spin reorientations. The average hyperfine field of the $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.34(T/T_C)^{3/2}-0.14(T/T_C)^{5/2}$ for $T/T_c<0.7$, indicative of spin wave excitation. The Debye temperatures of $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ is found to be Θ=340$\pm$5 K.

  • PDF

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF