Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.9.384

Electrical Properties of TiN/TiO2/FTO Resistive Random-Access Memory Based on Peroxo Titanium Complex Sol Solution by Heat Treatment  

Yim, Hyeonmin (Department of Energy Engineering, Dankook University)
Lee, Jinho (Department of Energy Engineering, Dankook University)
Kim, Won Jin (Department of Energy Engineering, Dankook University)
Oh, Seung-Hwan (Department of Energy Engineering, Dankook University)
Seo, Dong Hyeok (Department of Energy Engineering, Dankook University)
Lee, Donghee (Department of Energy Engineering, Dankook University)
Kim, Ryun Na (Department of Energy Engineering, Dankook University)
Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
Publication Information
Korean Journal of Materials Research / v.32, no.9, 2022 , pp. 384-390 More about this Journal
Abstract
A spin coating process for RRAM, which is a TiN/TiO2/FTO structure based on a PTC sol solution, was developed in this laboratory, a method which enables low-temperature and eco-friendly manufacturing. The RRAM corresponds to an OxRAM that operates through the formation and extinction of conductive filaments. Heat treatment was selected as a method of controlling oxygen vacancy (VO), a major factor of the conductive filament. It was carried out at 100 ℃ under moisture removal conditions and at 300 ℃ and 500 ℃ for excellent phase stability. XRD analysis confirmed the anatase phase in the thin film increased as the heat treatment increased, and the Ti3+ and OH- groups were observed to decrease in the XPS analysis. In the I-V analysis, the device at 100 ℃ showed a low primary SET voltage of 5.1 V and a high ON/OFF ratio of 104. The double-logarithmic plot of the I-V curve confirmed the device at 100 ℃ required a low operating voltage. As a result, the 100 ℃ heat treatment conditions were suitable for the low voltage driving and high ON/OFF ratio of TiN/TiO2/FTO RRAM devices and these results suggest that the operating voltage and ON/OFF ratio required for OxRAM devices used in various fields under specific heat treatment conditions can be compromised.
Keywords
peroxo titanium complex; resistive random-access memory; oxygen vacancy; conductive filament; oxide RAM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.-B. Kim, Trans. Electrical and Electron. Mater., 11, 93 (2010).
2 L. Wang and S. Gai, Contemporary Phys., 55, 75 (2014).
3 T. Kim, D.-K. Kim, J. Kim and J. J. Pak, Semicond. Sci. Technol., 34, 065006 (2019).
4 R. Waser and M. Aono, Nanoscience and Technology: A Collection of Reviews from Nature Journals, p.158, World Scientific (2010).
5 G. Khurana, P. Misra and R. S. Katiyar, J. Appl. Phys., 114, 124508 (2013).
6 K. M. Kim, D. S. Jeong and C. S. Hwang, Nanotechnology, 22, 254002 (2011).
7 D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee and S. Han, Nat. Nanotechnol., 5, 148 (2010).
8 M. M. Rehman, H. M. M. U. Rehman, J. Z. Gul, W. Y. Kim, K. S. Karimov and N. Ahmed, Sci. Technol. Adv. Mater., 21, 147 (2020).
9 Z. Shen, Y. Qi, I. Z. Mitrovic, C. Zhao, S. Hall, L. Yang, T. Luo, Y. Huang and C. Zhao, Micromachines, 10, 446 (2019).
10 Gyanan, S. Mondal and A. Kumar, AIP Conference Proceedings, 1832, 080075 (2017).
11 M. S. S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M. L. Grilli, M. Khosravy and T. Senjyu, Metals, 10, 1604 (2020).
12 J. Lee, R. N. Kim, K.-R. Park and W.-B. Kim, Appl. Surf. Sci., 562, 150170 (2021).
13 K. Wang, Y. Chang, L. Lv and Y. Long, Appl. Surf. Sci., 351, 164 (2015).
14 B. Shirke, P. Korake, P. Hankare, S. Bamane and K. Garadkar, J. Mater. Sci.: Mater. Electron., 22, 821 (2011).
15 J. Chen, H. Zheng, Y. Zhao, M. Que, X. Lei, K. Zhang and Y. Luo, J. Phys. Chem. Solids, 145, 109565 (2020).
16 W.-K. Wang, J.-J. Chen, X. Zhang, Y.-X. Huang, W.-W. Li and H.-Q. Yu, Sci. Rep., 6, 1 (2016).
17 V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Celerier and M. W. Barsoum, Matter, 4, 1224 (2021).
18 M. Ishfaq, M. R. Khan, M. Bhopal, F. Nasim, A. Ali, A. Bhatti, I. Ahmed, S. Bhardwaj and C. Cepek, J. Appl. Phys., 115, 174506 (2014).
19 A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez and D. Ielmini, 2016 IEEE International Electron Devices Meeting (IEDM), 4.3., 1 (2016).
20 Y. Dai, Y. Zhao, J. Wang, J. Xu and F. Yang, AIP Advances, 5, 017133 (2015).
21 S.-S. Park, J. Korean Ceram. Soc., 49, 642 (2012).
22 A. Gschwandtner, Mater. Sci. Forum, 573, 181 (2008).
23 Y.-S. Lin, Y.-W. Lain and S. S. Hsu, IEEE Electron Device Letters, 31, 102 (2009).
24 M. N. Awais and K. H. Choi, Electron. Mater. Lett., 10, 601 (2014).
25 Y. S. Sh in, K. Lee, Y. R. Kim, H. Lee, I. M. Lee, W. T. Kang, B. H. Lee, K. Kim, J. Heo and S. Park, Adv. Mater., 30, 1704435 (2018).
26 Y. Chen, L. Chen, G. Lian and G. Xiong, J. Appl. Phys., 106, 023708 (2009).