DOI QR코드

DOI QR Code

Electrical Properties of TiN/TiO2/FTO Resistive Random-Access Memory Based on Peroxo Titanium Complex Sol Solution by Heat Treatment

열처리에 따른 Peroxo Titanium Complex 졸 용액 기반 TiN/TiO2/FTO Resistive Random-Access Memory의 전기적 특성

  • Yim, Hyeonmin (Department of Energy Engineering, Dankook University) ;
  • Lee, Jinho (Department of Energy Engineering, Dankook University) ;
  • Kim, Won Jin (Department of Energy Engineering, Dankook University) ;
  • Oh, Seung-Hwan (Department of Energy Engineering, Dankook University) ;
  • Seo, Dong Hyeok (Department of Energy Engineering, Dankook University) ;
  • Lee, Donghee (Department of Energy Engineering, Dankook University) ;
  • Kim, Ryun Na (Department of Energy Engineering, Dankook University) ;
  • Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
  • 임현민 (단국대학교 에너지공학과) ;
  • 이진호 (단국대학교 에너지공학과) ;
  • 김원진 (단국대학교 에너지공학과) ;
  • 오승환 (단국대학교 에너지공학과) ;
  • 서동혁 (단국대학교 에너지공학과) ;
  • 이동희 (단국대학교 에너지공학과) ;
  • 김륜나 (단국대학교 에너지공학과) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2022.08.24
  • Accepted : 2022.09.14
  • Published : 2022.09.27

Abstract

A spin coating process for RRAM, which is a TiN/TiO2/FTO structure based on a PTC sol solution, was developed in this laboratory, a method which enables low-temperature and eco-friendly manufacturing. The RRAM corresponds to an OxRAM that operates through the formation and extinction of conductive filaments. Heat treatment was selected as a method of controlling oxygen vacancy (VO), a major factor of the conductive filament. It was carried out at 100 ℃ under moisture removal conditions and at 300 ℃ and 500 ℃ for excellent phase stability. XRD analysis confirmed the anatase phase in the thin film increased as the heat treatment increased, and the Ti3+ and OH- groups were observed to decrease in the XPS analysis. In the I-V analysis, the device at 100 ℃ showed a low primary SET voltage of 5.1 V and a high ON/OFF ratio of 104. The double-logarithmic plot of the I-V curve confirmed the device at 100 ℃ required a low operating voltage. As a result, the 100 ℃ heat treatment conditions were suitable for the low voltage driving and high ON/OFF ratio of TiN/TiO2/FTO RRAM devices and these results suggest that the operating voltage and ON/OFF ratio required for OxRAM devices used in various fields under specific heat treatment conditions can be compromised.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1006148).

References

  1. Y.-B. Kim, Trans. Electrical and Electron. Mater., 11, 93 (2010).
  2. M. M. Rehman, H. M. M. U. Rehman, J. Z. Gul, W. Y. Kim, K. S. Karimov and N. Ahmed, Sci. Technol. Adv. Mater., 21, 147 (2020).
  3. L. Wang and S. Gai, Contemporary Phys., 55, 75 (2014).
  4. G. Khurana, P. Misra and R. S. Katiyar, J. Appl. Phys., 114, 124508 (2013).
  5. T. Kim, D.-K. Kim, J. Kim and J. J. Pak, Semicond. Sci. Technol., 34, 065006 (2019).
  6. K. M. Kim, D. S. Jeong and C. S. Hwang, Nanotechnology, 22, 254002 (2011).
  7. R. Waser and M. Aono, Nanoscience and Technology: A Collection of Reviews from Nature Journals, p.158, World Scientific (2010).
  8. Y. Dai, Y. Zhao, J. Wang, J. Xu and F. Yang, AIP Advances, 5, 017133 (2015).
  9. Z. Shen, Y. Qi, I. Z. Mitrovic, C. Zhao, S. Hall, L. Yang, T. Luo, Y. Huang and C. Zhao, Micromachines, 10, 446 (2019).
  10. M. S. S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M. L. Grilli, M. Khosravy and T. Senjyu, Metals, 10, 1604 (2020).
  11. S.-S. Park, J. Korean Ceram. Soc., 49, 642 (2012).
  12. Gyanan, S. Mondal and A. Kumar, AIP Conference Proceedings, 1832, 080075 (2017).
  13. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee and S. Han, Nat. Nanotechnol., 5, 148 (2010).
  14. A. Gschwandtner, Mater. Sci. Forum, 573, 181 (2008).
  15. J. Lee, R. N. Kim, K.-R. Park and W.-B. Kim, Appl. Surf. Sci., 562, 150170 (2021).
  16. K. Wang, Y. Chang, L. Lv and Y. Long, Appl. Surf. Sci., 351, 164 (2015).
  17. B. Shirke, P. Korake, P. Hankare, S. Bamane and K. Garadkar, J. Mater. Sci.: Mater. Electron., 22, 821 (2011).
  18. J. Chen, H. Zheng, Y. Zhao, M. Que, X. Lei, K. Zhang and Y. Luo, J. Phys. Chem. Solids, 145, 109565 (2020).
  19. W.-K. Wang, J.-J. Chen, X. Zhang, Y.-X. Huang, W.-W. Li and H.-Q. Yu, Sci. Rep., 6, 1 (2016).
  20. V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Celerier and M. W. Barsoum, Matter, 4, 1224 (2021).
  21. M. Ishfaq, M. R. Khan, M. Bhopal, F. Nasim, A. Ali, A. Bhatti, I. Ahmed, S. Bhardwaj and C. Cepek, J. Appl. Phys., 115, 174506 (2014).
  22. A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez and D. Ielmini, 2016 IEEE International Electron Devices Meeting (IEDM), 4.3., 1 (2016).
  23. Y.-S. Lin, Y.-W. Lain and S. S. Hsu, IEEE Electron Device Letters, 31, 102 (2009).
  24. M. N. Awais and K. H. Choi, Electron. Mater. Lett., 10, 601 (2014).
  25. Y. S. Sh in, K. Lee, Y. R. Kim, H. Lee, I. M. Lee, W. T. Kang, B. H. Lee, K. Kim, J. Heo and S. Park, Adv. Mater., 30, 1704435 (2018).
  26. Y. Chen, L. Chen, G. Lian and G. Xiong, J. Appl. Phys., 106, 023708 (2009).