• Title/Summary/Keyword: spin-structure

Search Result 727, Processing Time 0.036 seconds

A topological metal at the surface of an ultrathin BiSb alloy film

  • Hirahara, T.;Sakamoto, Y.;Saisyu, Y.;Miyazaki, H.;Kimura, S.;Okuda, T.;Matsuda, I.;Murakami, S.;Hasegawa, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.14-15
    • /
    • 2010
  • Recently there has been growing interest in topological insulators or the quantum spin Hall (QSH) phase, which are insulating materials with bulk band gaps but have metallic edge states that are formed topologically and robust against any non-magnetic impurity [1]. In a three-dimensional material, the two-dimensional surface states correspond to the edge states (topological metal) and their intriguing nature in terms of electronic and spin structures have been experimentally observed in bulk Bi1-xSbx single crystals [2,3,4]. However, if we want to know the transport properties of these topological metals, high purity samples as well as very low temperature will be needed because of the contribution from bulk states or impurity effects. In a recent report, it was also shown that an intriguing coupling between the surface and bulk states will occur [5]. A simple solution to this bothersome problem is to prepare a topological metal on an ultrathin film, in which the surface-to-bulk ratio is drastically increased. Therefore in the present study, we have investigated if there is a method to make an ultrathin Bi1-xSbx film on a semiconductor substrate. From reflection high-energy electron diffraction observation, it was found that single crystal Bi1-xSbx films (0${\sim}30\;{\AA}A$ can be prepared on Si(111)-$7{\times}7$. The transport properties of such films were characterized by in situ monolithic micro four-point probes [6]. The temperature dependence of the resistivity for the x=0.1 samples was insulating when the film thickness was $240\;{\AA}A$. However, it became metallic as the thickness was reduced down to $30\;{\AA}A$, indicating surface-state dominant electrical conduction. Figure 1 shows the Fermi surface of $40\;{\AA}A$ thick Bi0.92Sb0.08 (a) and Bi0.84Sb0.16 (b) films mapped by angle-resolved photoemission spectroscopy. The basic features of the electronic structure of these surface states were shown to be the same as those found on bulk surfaces, meaning that topological metals can be prepared at the surface of an ultrathin film. The details will be given in the presentation.

  • PDF

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.

Relationship between Network Intensity of Top Managers and R&D Investment - Focus on Moderating Effects of the Corporate Division Type and System - (최고경영자와 이사회의 네트워크밀도와 R&D투자의 관계 - 기업분할 유형과 제도의 조절효과 분석 -)

  • Min, Ji-Hong;Yoo, Jae-Wook;Kim, Choo-Yeon
    • Management & Information Systems Review
    • /
    • v.38 no.1
    • /
    • pp.1-21
    • /
    • 2019
  • This study focuses on (1) the relationship between the network intensity of top managers and the R&D investment of Korean firms, and (2) the moderating effects of the type (related-division vs. unrelated-division) and system (physical division vs. spin-offs) of corporate division on this relationship. The sample of this study was all type and/or system of corporate division implemented by Korean firms during 18-years (1999-2016) study periods. The results of multiple regression analyses as follow. First, as was expected in hypothesis 1 the network intensity of top managers has a strong positive linear relation with the R&D investment of Korean firms. Second, regarding the moderating effect of division type the results show that related-divisions significantly intensify the positive relationship of the network intensity of top managers with the R&D of Korean firms although unrelated-divisions did not. Third, in the analysis of moderating effect of corporate division system the results present the stronger positive moderating effect of spin-offs rather than physical divisions. The findings of the study implies that strong network intensity of top managers can be beneficial to long-term decision such as R&D investment of Korean firms. They accords to network theory that emphasize the importance of strong network effect among top managers based on their trust. The findings also implies that researchers and practitioners should consider organizational-level factors such as organizational structure, culture, corporate governance, etc as well as individual-level factors such as the characteristics and relationships of organizational members when making the decision for firm.

Investigation on Ferroelectric and Magnetic Properties of Pb(Fe1/2Nb1/2)O3 Fe-Site Engineered with Antisymmetric Exchange Interaction (반대칭 교환 상호작용을 갖도록 Fe-Site가 제어된 PbFe1/2Nb1/2O3의 강유전/자기적 특성 연구)

  • Park, Ji-Hun;Lee, Ju-Hyeon;Cho, Jae-Hyeon;Jang, Jong Moon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.297-302
    • /
    • 2022
  • We investigated the origin of magnetic behaviors induced by an asymmetric spin exchange interaction in Fe-site engineered lead iron niobate [Pb(Fe1/2Nb1/2)O3, PFN], which exhibits a room-temperature multiferroicity. The magnitude of spin exchange interaction was regulated by the introduced transition metals with a distinct Bohr magneton, i.e., Cr, Co, and Ni. All compositions were found to have a single-phase perovskite structure keeping their ferroelectric order except for Cr introduction. We discovered that the incorporation of each transition metal imposes a distinct magnetic behavior on the lead iron niobate system; antiferro-, hard ferro-, and soft ferromagnetism for Cr, Co, and Ni, respectively. This indicates that orbital occupancy and interatomic distance play key roles in the determination of magnetic behavior rather than the magnitude of the individual Bohr magneton. Further investigations are planned, such as X-ray absorption spectroscopy, to clarify the origin of magnetic properties in this system.

Comparing the Industrial Characteristics of Smart City in Korea and Spain (한국과 스페인의 스마트시티 산업 특성 비교)

  • Jo, Sung Su;Lee, Sang Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.38 no.3
    • /
    • pp.19-39
    • /
    • 2022
  • The aim of this study is to compare and analyze structural characteristics of smart city industry focused on Korea and Spain. Structural characteristics of industries were compared focusing on share, penetration, impact path and network clustering of smart industries. Research data used input-output tables established by Korea and Spain in 1995 and 2015, and industries were reclassified into 8 and 25 industries. The analysis model is the Smart SPIN Model. The key finding as follows: It was analyzed that there are differences in the structure and characteristics of the smart city industry between Korea and Spain. Firstly, It is analyzed that Korea has a larger share and penetration rate of IT manufacturing than Spain. On the other hands, Spain has a higher share and penetration rate in the IT service and knowledge service sectors than Korea. Secondly, Korea had many production paths for the IT service and the knowledge service. On the other hands, Spain included more production paths in the IT manufacturing sector. Thirdly, as a result of network analysis, Korea's smart industry has a characteristic that it is difficult to develop independently because it is dependent on traditional industries. In Spain, most of the smart industries were included in one industrial cluster, and it was analyzed to have an independent form. In conclusion, It was found that Korea has the industrial characteristics of a smart city based on IT manufacturing. Spain has the characteristics of smart city industry based on IT service and knowledge service. The results of this study are expected to provide basic data on the direction of smart city promotion and the establishment of smart city policies in Korea.

An analysis of Factorial structure of Kinematic variables in Bowling (볼링의 운동학적 분석과 주요인 구조분석)

  • Lee, Kyung-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.381-392
    • /
    • 2002
  • This study attempted to indentify changeability of the factorial structure of kinematic analysis in bowling. Subjects of group composed of three groups : Higher bowers who are national representative bowers with 200 average point and one pro-bowler. Middle bowlers who are three common persons with 170 average points. Lower bowler who are three common persons with 150 average points. Motion analysis on throw motion in three groups respectively has been made through three-dimension cinematography using DLT method. Two high-speed video camera at operating 180 and 60 frame per secondary. T-test factorial structure analysis has been used to define variable relations. It was concluded that : 1. The difference of x1, x2, x4, x8, x9, x11, x12, x13 where significant between two group. 2. The difference of number of spin and angle of the back-hand where statistically significant between two group(p<.001, p<.05) 3. The correlation over r=.5 between the kinematic data x1, x2, x3, x9, x10, x11. In the rotation loading matrix Factor 1 was x1, x2, x9, x10 and Factor 2 relates to x3, x11. 4. In order to obtain the factor score as follow as ; Factor 1 = (0.248)X1 + (0.265)X2 + (-0.074)X3 + (0.259)X9 + (0.259)X10 + (-0.025)X11 Factor 2=(-0.016)X1 + (-0.055)X2 + (0.84)X3 + (-0.013)X9 + (-0.007)X10 + (0.553)X11.

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

The Electronic Structure and Magnetism of bcc Rh(001) Surface (체심 입방구조 Rh(001) 표면의 전자구조와 자성)

  • Cho, L.H.;Bialek, B.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.206-210
    • /
    • 2008
  • According to the recent reports the bulk bcc Rh is ferromagnetic with a small difference of energy compared to paramagnetic state. In this study, the electronic structure and magnetism for bcc Rh(001) surface are investigated by means of the all-electron full potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the surface ferromagnetic state is preferable over the paramagnetic one. For unrelaxed system, the magnetic moment of the surface layer, $0.48{\mu}B$, is slightly increased comparing with the bulk value, $0.41{\mu}B$ while the value of the subsurface layer, $0.23{\mu}B$, is much smaller than the bulk value. The total energy and atomic force calculations show that the surface layer is relaxed downward and the subsurface layer moves upward to reduce the layer distance between the surface and subsurface layers by 7.0 %. The relaxation effect leads to weakening the surface magnetic properties. Specifically, the value of the magnetic moment of the surface atom is decreased to $0.36{\mu}B$. Since the spin polarization of the subsurface layer is only $0.14{\mu}B$, it is concluded that the bcc Rh(001) surface is rather weakly ferromagnetic.

Photocurrent study on the splitting of the valence band and growth of MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 MgGa2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Kim, Hyejeong;Park, Hwangseuk;Bang, Jinju;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.283-290
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $MgGa_2Se_4$ have been estimated to be 190.6 meV and 118.8 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $MgGa_2Se_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$exciton for n = 1 and $C_{27}-exciton$ peaks for n = 27.