• Title/Summary/Keyword: spin transistor

Search Result 94, Processing Time 0.026 seconds

Spin Transport in a Ferromagnet/Semiconductor/Ferromagnet Structure: a Spin Transistor

  • Lee, W.Y;Bland, J.A.C
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • The magnetoresistance (MR) and the magnetization reversal of a lateral spin-injection device based on a spin-polarized field effect transistor (spin FET) have been investigated. The device consists of a two-dimensional electron gas (2DEG) system in an InAs single quantum well (SQW) and two ferromagnetic $(Ni_{80}Fe_{20})$ contacts: all injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and, after propagating through the InAs SQW are collected by the second contact. By engineering the shape of the permalloy contacts, we were able to observe distinct switching fields $(H_c)$ from the injector and the collector by using scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20~60 Oe), at room temperature, over which the magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.

Silicon Spintronics (실리콘 스핀트로닉스)

  • Min, Byoung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.67-76
    • /
    • 2011
  • Semiconductor spintronics is an emerging interdisciplinary technology based on the electron spin degree of freedom, combining the magnetic materials and semiconductors. The spin transistor represents a novel semiconductor device, in which the electron spin is injected, manipulated, and detected, and thereby a memory function and data processing function are enabled in one device. Particularly, the spin transistor based on Silicon, the mainstream semiconductor, might have a significant impact on information technology. This review introduces the major progresses of Silicon spintronics in recent years, and describes the technical issues for the future.

Gate-Controlled Spin-Orbit Interaction Parameter in a GaSb Two-Dimensional Hole gas Structure

  • Park, Youn Ho;Koo, Hyun Cheol;Shin, Sang-Hoon;Song, Jin Dong;Kim, Hyung-Jun;Chang, Joonyeon;Han, Suk Hee;Choi, Heon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.382-383
    • /
    • 2013
  • Gate-controlled spin-orbit interaction parameter is a key factor for developing spin-Field Effect Transistor (Spin-FET) in a quantum well structure because the strength of the spin-orbit interaction parameter decides the spin precession angle [1]. Many researches show the control of spin-orbit interaction parameter in n-type quantum channels, however, for the complementary logic device p-type quantum channel should be also necessary. We have calculated the spin-orbit interaction parameter and the effective mass using the Shubnikov-de Haas (SdH) oscillation measurement in a GaSb two-dimensional hole gas (2DHG) structure as shown in Fig 1. The inset illustrates the device geometry. The spin-orbit interaction parameter of $1.71{\times}10^{11}$ eVm and effective mass of 0.98 $m^0$ are obtained at T=1.8 K, respectively. Fig. 2 shows the gate dependence of the spin-orbit interaction parameter and the hole concentration at 1.8 K, which indicates the spin-orbit interaction parameter increases with the carrier concentration in p-type channel. On the order hand, opposite gate dependence was found in n-type channel [1,2]. Therefore, the combined device of p- and n-type channel spin transistor would be a good candidate for the complimentary logic device.

  • PDF

SI-BASED MAGNETIC TUNNELING TRANSISTOR WITH HIGH TRANSFER RATIO

  • S. H. Jang;Lee, J. H.;T. Kang;Kim, K. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.24-24
    • /
    • 2003
  • Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10$\^$-5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$-4/ range at bias voltage of more than 1.8 V, collector current of near l ${\mu}$A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications.

  • PDF

Indium Sulfide and Indium Oxide Thin Films Spin-Coated from Triethylammonium Indium Thioacetate Precursor for n-Channel Thin Film Transistor

  • Dao, Tung Duy;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3299-3302
    • /
    • 2014
  • The In2S3 thin films of tetragonal structure and In2O3 films of cubic structure were synthesized by a spin coating method from the organometallic compound precursor triethylammonium indium thioacetate ($[(Et)_3NH]^+[In(SCOCH_3)_4]^-$; TEA-InTAA). In order to determine the electron mobility of the spin-coated TEA-InTAA films, thin film transistors (TFTs) with an inverted structure using a gate dielectric of thermal oxide ($SiO_2$) was fabricated. These devices exhibited n-channel TFT characteristics with a field-effect electron mobility of $10.1cm^2V^{-1}s^{-1}$ at a curing temperature of $500^{\circ}C$, indicating that the semiconducting thin film material is applicable for use in low-cost, solution-processed printable electronics.

Fabrication and Properties of Magnetic-Tunneling Transistor Films (자기터널링 트랜지스터 박막의 제작 및 특성 연구)

  • 윤태호;윤문성;이상석;황도근
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.172-173
    • /
    • 2002
  • 스핀전자소자 연구 분야의 가장 큰 관심은 전하와 스핀의 자유도를 동시에 고려하여 메모리 및 논리용 트랜지스터를 구현하려는데 있다. 스핀 분극 된 전자를 자성금속으로부터 상자성 및 절연체를 이용하여 또 다른 자성체 및 반도체, 초전도체에 주입하는 일 (Spin injection)에 관한 연구가 일부 진행되어 왔다. 두 개의 자성 금속 사이에 Au등의 상자성 금속을 끼워 넣는 구조로 한쪽의 자성금속을 스핀 소스로 사용하여 상자성 금속에 스핀을 주입하고 다른 쪽의 자성금속으로 주입된 스핀을 검출하는 스핀 스위치 저장소자로서의 양극 스핀 트랜지스터 (bipolar spin transistor)를 많은 연구소에서 제조 연구하였다. (중략)

  • PDF

Equivalent Circuit Model For Switching Performance of Bipolar Spin Transistor

  • Yong Tae, Kim;Gap Yong, Lee
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.182-185
    • /
    • 2003
  • We have suggested an equivalent circuit model for switching performance of bipolar spin transistor composed of a nonmagnetic metal film (N) sandwiched between two ferromagnetic metal films (F1 and F2). The 'ON' or 'OFF' operation of this equivalent circuit model is simulated by depending on the orientation of the magnetization of F1 and F2 rather than the strength of the external magnetic filed. Changing the coupling coefficient, turn number of two inductances, (L1:L2) like a transformer, and parallel variable resistance R4 connected to L2 at the collector region, we can explain the magnetic characteristics and the dependence of magneto resistance ratio on the orientation of spin-polarized electrons.

  • PDF

Correlation between spin density and Vth instability of IGZO thin-film transistors

  • Park, Jee Ho;Lee, Sohyung;Lee, Hee Sung;Kim, Sung Ki;Park, Kwon-Shik;Yoon, Soo-Young
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1447-1450
    • /
    • 2018
  • The electron spin resonance (ESR) detects point defect of the In-Ga-Zn oxide (IGZO) like singly ionized oxygen vacancies and excess oxygen, and get spin density as a parameter of defect state. So, we demonstrated the spin density measurement of the IGZO film with various deposition conditions and it has linear relationship. Moreover, we matched the spin density with the total BTS and the threshold voltage ($V_{th}$) distribution of the IGZO thin film transistors. The total BTS ${\Delta}V_{th}$ and the $V_{th}$ distribution were degraded due to the spin density increases. The spin density is the useful indicator to predict $V_{th}$ instability of IGZO TFTs.

Atmospheric Pressure Plasma를 이용한 Oxide Thin Film Transistor의 특성 개선 연구

  • Mun, Mu-Gyeom;Kim, Ga-Yeong;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.582-582
    • /
    • 2013
  • Oxide TFT (thin film transistor) active channel layer에 대한 저온 열처리 공정은 투명하고 flexibility을 기반으로하는 display 산업과 AMOLED (active matrix organic light emitting diode) 분야 등 다양한 분야에서 필요로 하는 기술로서 많은 연구가 이루어지고 있다. 과거 active layer는 ALD (atomic layer deposition), CVD (chemical vapor deposition), pulse laser deposition, radio frequency-dc (RF-dc) magnetron sputtering 등과 같은 고가의 진공 장비를 이용하여 증착 되어져 왔으나 현재에는 진공 장비 없이 spin-coating 후 열처리 하는 저가의 공정이 주로 연구되어 지고 있다. Flexible 기판들은 일반적인 OTFT (oxide thin films Transistor)에 적용되는 열처리 온도로 공정 진행시 열에 의한 기판의 손상이 발생한다. Flexible substrate의 열에 의한 기판 손상을 막기 위해 저온 열처리 공정이 연구되고 있지만 기존 열처리와 비교하여 소자의 특성 저하가 동반 되었다. 본 연구에서는 Si 기판위에 SiO2 (100)를 절연층으로 증착하고 그 위에 IZO (indium zinc oxide) solution을 spin-coating 한뒤 $250^{\circ}C$ 이하의 온도에서 열처리하였다. 저온 공정으로 인하여 소자의 특성 저하가 동반 되었으므로 소자의 저하된 특성 복원하고자 post-treatment로 고가의 진공장비가 필요 없고 roll-to roll system 적용이 수월한 remote-type의 APP (atmospheric pressure plasma) 처리를 하였다. Post-treatment로 APP를 이용하여 $250^{\circ}C$ 이하에서 소자에 적용 가능한 on/off ratio를 얻을 수 있었다.

  • PDF