• 제목/요약/키워드: spin transfer

검색결과 213건 처리시간 0.024초

Non-Equilibrium Green Function Method in Spin Transfer Torque

  • You, Chun-Yeol
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.72-76
    • /
    • 2007
  • We investigate the spin transfer torque in metallic multilayer system by employing Keldysh non-equilibrium Green function method. We study the dependences of the spin transfer torque on the detailed energy configuration of ferromagnetic, spacer, and lead layers. With Keldysh non-equilibrium Green function method applied to a single band model, we explore spin transfer torque effect in various layer structures and for various material parameters.

비대칭 자기터널접합에서의 수직 스핀 전달 토크: 물질 변수에 대한 의존성 (Perpendicular Spin-transfer Torque in Asymmetric Magnetic Tunnel Junctions: Material Parameter Dependence)

  • 한재호;이현우
    • 한국자기학회지
    • /
    • 제21권2호
    • /
    • pp.52-55
    • /
    • 2011
  • 스핀전달토크는 나노구조에서 자성상태를 제어하는데 유용한 수단이다. 자기터널접합에서 스핀전달토크는 자성물질층의 자화가 이루는 평면에 평행한 성분과 수직인 성분으로 나눌 수 있다. 이중 평행한 성분의 스핀전달토크의 성질은 상당히 잘 알려져 있으나, 수직인 성분의 스핀전달토크의 성질에 대해서는 여전히 이견이 많다. 비대칭 자기터널접합에서의 최근 실험에서, 수직전달토크의 전압 의존성이 전압의 이차항 성분뿐만 아니라 일차항 성분도 가짐을 보고하였다. 하지만 물질 변수에 대한 의존성은 여전히 잘 알려지지 않았다. 이 논문에서는 비대칭 자기터널접합에서의 스핀전달토크의 전압의존성을, 강자성층의 스핀 갈라짐 에너지와 일함수의 차이, 그리고 페르미 에너지를 변화시켜 가면서 체계적인 조사를 하였다.

가열된 회전원주를 지나는 정상유동 및 열전달해석 (Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

Improvement of the Spin Transfer Induced Switching Effect by Copper and Ruthenium Buffer Layer

  • Nguyen T. Hoang Yen;Yi, Hyun-Jung;Joo, Sung-Jung;Jung, Myung-Hwa;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • 제10권2호
    • /
    • pp.48-51
    • /
    • 2005
  • The spin transfer induced magnetization switching has been reported to occur in magnetic multilayer structures whose scope usually consists of one stack of ferromagnetic / non-ferromagnetic / ferromagnetic (F / N / F) materials. In this work, it is shown that: 1) Copper used as a buffer layer between the free Co and the Au cap-layer can clearly increase the probability to get the spin transfer induced magnetization switching in a simple spin valve Co 11 / Cu 6/ Co 2 (nm); 2) Furthermore, when Ruthenium is simultaneously applied as a buffer layer on the Si-substrate, the critical switching currents can be reduced by $30\%$, and the absolute resistance change delta R $[{\Delta}R]$ of that stack can be enlarged by $35\%$. The enhancement of the spin transfer induced magnetization switching can be ascribed to a lower local stress in the thin Co layer caused by a better lattice match between Co and Cu and the smoothening effect of Ru on the thick Co layer.

Current-induced Spin Wave Excitations in Asymmetric Nanopillar Junctions

  • Fiandimas, Arie;Lee, Kyung-Jin;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.90-92
    • /
    • 2009
  • This study examined the current-induced spin wave excitation in asymmetric nanopillar junctions with a stack sequence of 20 nm Pt/10 nm Cu/7 nm NiFe/300 nm Cu, and a circular lateral dimension of 240 nm. An analysis of the magnetic and magnetotransport characteristics of the junction showed a possible spin transfer effect at this sample dimension when the magnetization was switched from a vortex state to another state. This finding is expected to help improve the understanding of the spin transfer torque phenomenon in nanopillar junctions.

Micromagnetic Simulations for Spin Transfer Torque in Magnetic Multilayers

  • You, Chun-Yeol
    • Journal of Magnetics
    • /
    • 제17권2호
    • /
    • pp.73-77
    • /
    • 2012
  • We investigate spin transfer torque (STT) in magnetic multilayer structures using micromagnetic simulations. We implement the STT contribution for magnetic multilayer structures in addition to the Landau-Lifshitz-Gilbert (LLG) micromagnetic simulators. In addition to the Sloncewski STT term, the zero, first, and second order field-like terms are also considered as well as the effects of the Oersted field due to the running current are addressed. We determine the switching current densities of the free layer with the exchange biased synthetic ferrimagnetic reference layers for various cases.

Metastable Vortex State of Perpendicular Magnetic Anisotropy Free Layer in Spin Transfer Torque Magnetic Tunneling Junctions

  • You, Chun-Yeol;Kim, Hyungsuk
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.380-385
    • /
    • 2013
  • We find a metastable vortex state of the perpendicular magnetic anisotropy free layer in spin transfer torque magnetic tunneling junctions by using micromagnetic simulations. The metastable vortex state does not exist in a single layer, and it is only found in the trilayer structure with the perpendicular magnetic anisotropy polarizer layer. It is revealed that the physical origin is the non-uniform stray field from the polarizer layer.

Effect of the Perpendicular Magnetic Field and Nonadiabatic Spin-transfer Torque on the Vortex Dynamics

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • 제13권4호
    • /
    • pp.157-159
    • /
    • 2008
  • The effect of the perpendicular field on the trajectory of a vortex core driven by spin-transfer torque was investigated using micromagnetic simulations. The trajectory of the vortex core was staggered due to distortions of the moving vortex core. The core trajectory was affected by both the perpendicular field and ${\beta}$ value, which is the relative magnitude of nonadiabatic spin torque to the adiabatic spin torque. This suggests that the effect of the perpendicular field should be considered when examining a vortex core trajectory affected by ${\beta}$.

Using Electron-beam Resists as Ion Milling Mask for Fabrication of Spin Transfer Devices

  • Nguyen Hoang Yen Thi;Yi, Hyun-Jung;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • 제12권1호
    • /
    • pp.12-16
    • /
    • 2007
  • Magnetic excitation and reversal by a spin polarized current via spin transfer have been a central research topic in spintronics due to its application potential. Special techniques are required to fabricate nano-scale magnetic layers in which the effect can be observed and studied. This work discusses the possibility of using electron-beam resists, the nano-scale patterning media, as ion milling mask in a subtractive fabrication method. The possibility is demonstrated by two resists, one positive tone, the ZEP 520A, and one negative tone, the ma-N2403. The advantage and the key points for success of this process will be also addressed.

Spin Transfer Torque in Ferromagnet-Normal Metal-Antiferromagnet Junctions

  • Lee, Hyun-Woo;Yang, Hyun-Soo
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.92-96
    • /
    • 2011
  • This study investigated theoretically the properties of the spin transfer torque acting on a ferromagnet in a ferromagnet-normal metal-antiferromagnet junction. Earlier work showed that the angular dependence of the spin transfer torque can be a wavy-type if the junction satisfies a special symmetry. This paper reports a simple model analysis that allows a derivation of the wavy angular dependence without taking advantage of the symmetry. This result suggests that the wavy angular dependence can appear even when the symmetry is broken. As an illustration, the angular dependence was calculated as a function of the degree of the compensation at the normal metal-antiferromagnet interface. The implications of the result for the current-induced magnetization precession are discussed.