• Title/Summary/Keyword: spin group

Search Result 137, Processing Time 0.028 seconds

Evidence of Spin Reorientation by Mössbauer Analysis

  • Myoung, Bo Ra;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.126-129
    • /
    • 2014
  • We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.

Spectroscopic Properties and Ligand Field Analysis of cis-Dinitrato(1,4,8,11-tetraazacyclotetradecane)chromium(III) Nitrate

  • 최종하
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.819-823
    • /
    • 1997
  • The luminescence and photoexcitation spectra of cis-[Cr(cyclam)(NO3)2]NO3·½ H2O (cyclam=1,4,8,11-tetraazacyclotetradecane) taken at 77 K are reported. The infrared and visible spectra at room-temperature are also measured. The vibrational intervals of the electronic ground state are extracted from the far-infrared and emission spectra. The ten electronic bands due to spin-allowed and spin-forbidden transitions are assigned. With observed transitions, a ligand field analysis has been performed to determine the bonding property of nitrate group in the chromium(Ⅲ) complex. According to the results, it is found that nitrate ligand has weak σ- and π-donor properties toward chromium(Ⅲ).

Copper(II) Coordination Polymers Assembled from 2-[(Pyridin-3-ylmethyl)amino]ethanol: Structure and Magnetism

  • Han, Jeong-Hyeong;Shin, Jong-Won;Min, Kil-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1113-1117
    • /
    • 2009
  • The one-dimensional coordination polymers, $[Cu^{II}(L)(NO_3)_2]_n$ (1) and {$[Cu^{II}(L)(NO_3)]{\cdot}2H_2O}_{2n} (2), were synthesized from $Cu(NO_3)_2{\cdot}3H_2O$ and 2-[(pyridin-3-ylmethyl)amino]ethanol (L, PMAE) in methanol by controlling the molar ratio of copper(II) salt. Copper(II) ion in 1 has one pyridine group of PMAE whose an aminoethanol group coordinates adjacent copper(II) ion. As the pyridine group is bonded to neighboring copper(II) ion, 1 becomes a one-dimensional chain. Contrary to 1, the structure of 2 shows that the oxygen atom of ethoxide group is bridged between two copper(II) ions, which forms a dinuclear complex. Additionally, the pyridine group of PMAE included one dinuclear unit is coordinated to the other dimeric one each other, which leads to a one-dimensional polymer. Due to the structural differences, 1 exhibits weak antiferromagnetic interaction, while 2 shows strong antiferromagnetic interaction. Due to direct spin exchange via oxygen of PMAE 2 has a much strong spin coupling than 1.

Two Dimensional Transfer Modes in $CH_2$ Spin System

  • NamGoong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.59-73
    • /
    • 2006
  • Spin-lattice relaxation pathway of $CH_2$ spin system by two dimensional NOESY sequence has been discussed. Two-dimensional spectra governed by dipolar relaxation mechanism were simulated in term of transfer mode, the generalization of conventionally used magnetization mode in one dimension. The transfer matrix directly related to the Redfield relaxation matrix can be constructed by the multiplet of transfer mode. The observable relaxation transfer modes causes to variation of the off-diagonal signal intensity of phase sensitive NOESY spectra from which variable spectral density can be extracted with simple group theoretical calculation. The variation of the J-coupling peak intensity as a function of the mixing time in 2-D spectra for $n-Undecane-5-^{13}C$ and Bromoacetic $2-^{13}C$ acid has been theoretically traced.

  • PDF

Mechanical Analysis of throw motion in Bowling (볼링투구동작의 운동역학적 분석(II))

  • Lee, Kyung-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.173-191
    • /
    • 2002
  • The purpose of this study was defined efficient throw motion pattern to obtain the quantitative data and to achieve successful bowling through kinetic - kinematic variables on the throw motion. Subject of group composed of three groups : Higher bowlers who are two representative bowlers with 200 average points and one pro-bowler. Middle bowlers who are three common persons with 170 average points. Lower bowler who are three common persons with 150 average points. Motion analysis on throw motion in three groups respectively has been made through three-dimension cinematography using DLT method. Two high-speed video camera at operating 180 frame per secondary. One-way ANOVA has been used to define variable relations. Analyzed result and conclusion are the following : The displacement of back of the hand must have wider difference of each right-left displacement to increase the spin of the ball. In high bowlers group, difference between the front-rear position of back of the hand in case of success and that in case of failure in follow throw is 0.17m. That is to say, momentum in case of success come to increase greatly, compared with that in case of failure. To increase the spin of the ball, the potential difference should be narrower in follow through. In case of the high bowlers, the velocity of the front-rear direction of the back of the hand has been the fastest both in release and follow through, compared with those in other groups, which has contributed to increasing the spin force of the ball. The orders in the resultant velocity of the back of the hand has shown the this : the finger tip$\rightarrow$the back of the hand$\rightarrow$wrist.These orders made the proximal segment support the distal segment. The distal segment has provided the condition to accelerate the velocity. In case of failure, the suddenly increased velocity has caused the failure in the follow through. Acutely flexing the angle of the back of the hand has contributed to lifting to increase the spin of the ball.

A NOTE ON INVARIANT PSEUDOHOLOMORPHIC CURVES

  • Cho, Yong-Seung;Joe, Do-Sang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.347-355
    • /
    • 2001
  • Let ($X, \omega$) be a closed symplectic 4-manifold. Let a finite cyclic group G act semifreely, holomorphically on X as isometries with fixed point set $\Sigma$(may be empty) which is a 2-dimension submanifold. Then there is a smooth structure on the quotient X'=X/G such that the projection $\pi$:X$\rightarrow$X' is a Lipschitz map. Let L$\rightarrow$X be the Spin$^c$ -structure on X pulled back from a Spin$^c$-structure L'$\rightarrow$X' and b_2^$+(X')>1. If the Seiberg-Witten invariant SW(L')$\neq$0 of L' is non-zero and $L=E\bigotimesK^-1\bigotimesE$ then there is a G-invariant pseudo-holomorphic curve u:$C\rightarrowX$,/TEX> such that the image u(C) represents the fundamental class of the Poincare dual $c_1$(E). This is an equivariant version of the Taubes' Theorem.

  • PDF

An NMR Study on Dynamics of$ AX_3$ Spin System as Illustrated By Methyl Group in 2,6-Dichlorotoluene

  • 노정래;현남궁;이조웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1326-1333
    • /
    • 1998
  • The study of coupled relaxation for methyl spin system in 2,6-dichlorotoluene was performed on the basis of the magnetization mode formalism. Using five initial perturbing pulse sequences, eight experimntal data sets were obtained, which were fitted with theoretical expressions with nine spectral density parameters. The same experiment was carried out at both 50.3 MHz and 125.6 MHz in carbon frequency. The measured spectral densities at both fields are similar in the exception of that related with carbon random field term. Furthermore, from the dipolar spectral density, the physical values may be extracted depending on the model of molecular reorientation. For example, it was assumed that the molecular framework undergoes asymmetric diffusive rotational process and methyl group reorients by either diffusive rotation about its symmetry axis or jump among internal rotational potential minima.

Implementation of Single-Wheeled Robots : GYROBO (한 바퀴로 구동하는 로봇 GYROBO의 구현)

  • Kim, Pil-Kyo;Kim, Yeon-Seop;Jung, Seul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper a single-wheeled robot called GYROBO is built and its hardware is implemented. The single-wheeled robot is similar to a rolling disk relying on gyroscopic motions to maintain its balance. The GYROBO consists of three actuators: a spin motor a tilt motor, and a drive motor. The spin motor spins a flywheel at a high rate so that it provides the balancing stability to upright the robot. The tilt motor controls steering of the robot by gyroscopic effect. The drive motor makes forward accelerated motion to the robot. Several models are designed. Experimental works of the GYROBO to turn and move forward have been presented.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.

Effects of real-time feedback training on weight shifting during golf swinging on golf performance in amateur golfers

  • Hwang, Ji-Hyun;Choi, Ho-Suk;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effects of real-time visual feedback weight shift training during golf swinging on golf performance. Design: Repeated-measures crossover design. Methods: Twenty-sixth amateur golfers were enrolled and randomly divided into two groups: The golf swing training with real-time feedback on weight shift (experimental group) swing training on the Wii balance board (WBB) by viewing the center of pressure (COP) trajectory on the WBB. All participants were assigned to the experimental group and the control group. The general golf swing training group (control group) performed on the ground. The golf performance was measured using a high-speed 3-dimensional camera sensor which analyses the shot distance, ball velocity, vertical launch angle, horizontal launch angle, back spin velocity and side spin velocity. The COP trajectory was assessed during 10 practice sessions and the mean was used. The golf performance measurement was repeated three times and its mean value was used. The assessment and training were performed at 24-hour intervals. Results: After training sessions, the change in shot distance, ball velocity, and horizontal launch angle pre- and post-training were significantly different when using the driver and iron clubs in the experimental group (p<0.05). The interaction time${\times}$group and time${\times}$club were not significant for all variables. Conclusions: In this study, real-time feedback training using real-time feedback on weight shifting improves golf shot distance and accuracy, which will be effective in increasing golf performance. In addition, it can be used as an index for golf player ability.