• Title/Summary/Keyword: spherical projection

Search Result 38, Processing Time 0.029 seconds

Development of Full ice-cream cone model for HCME 3-D parameters

  • Na, Hyeonock;Moon, Yong-Jae;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2016
  • The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 26 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs are dominant over shallow ice-cream cone CMEs. Thus we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection speeds with the observed ones. We apply this model to 12 SOHO halo CMEs and compare the results with those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data.

  • PDF

Video Mosaics in 3D Space

  • Chon, Jaechoon;Fuse, Takashi;Shimizu, Eihan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.390-392
    • /
    • 2003
  • Video mosaicing techniques have been widely used in virtual reality environments. Especially in GIS field, video mosaics are becoming more and more common in representing urban environments. Such applications mainly use spherical or panoramic mosaics that are based on images taken from a rotating camera around its nodal point. The viewpoint, however, is limited to location within a small area. On the other hand, 2D-mosaics, which are based on images taken from a translating camera, can acquire data in wide area. The 2D-mosaics still have some problems : it can‘t be applied to images taken from a rotational camera in large angle. To compensate those problems , we proposed a novel method for creating video mosaics in 3D space. The proposed algorithm consists of 4 steps: feature -based optical flow detection, camera orientation, 2D-image projection, and image registration in 3D space. All of the processes are fully automatic and successfully implemented and tested with real images.

  • PDF

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

A Hardware Design for Realtime Correction of a Barrel Distortion Using the Nearest Pixels on a Corrected Image (보정 이미지의 최 근접 좌표를 이용한 실시간 방사 왜곡 보정 하드웨어 설계)

  • Song, Namhun;Yi, Joonhwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.49-60
    • /
    • 2012
  • In this paper, we propose a hardware design for correction of barrel distortion using the nearest coordinates in the corrected image. Because it applies the nearest distance on corrected image rather than adjacent distance on distorted image, the picture quality is improved by the image whole area, solve the staircase phenomenon in the exterior area. But, because of additional arithmetic operation using design of bilinear interpolation, required arithmetic operation is increased. Look up table(LUT) structure is proposed in order to solve this, coordinate rotation digital computer(CORDIC) algorithm is applied. The results of the synthesis using Design compiler, the design of implementing all processes of the interpolation method with the hardware is higher than the previous design about the throughput, In case of the rear camera, the design of using LUT and hardware together can reduce the size than the design of implementing all processes with the hardware.

An Approach to 3D Object Localization Based on Monocular Vision

  • Jung, Sung-Hoon;Jang, Do-Won;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1658-1667
    • /
    • 2008
  • Reconstruction of 3D objects from a single view image is generally an ill-posed problem because of the projection distortion. A monocular vision based 3D object localization method is proposed in this paper, which approximates an object on the ground to a simple bounding solid and works automatically without any prior information about the object. A spherical or cylindrical object determined based on a circularity measure is approximated to a bounding cylinder, while the other general free-shaped objects to a bounding box or a bounding cylinder appropriately. For a general object, its silhouette on the ground is first computed by back-projecting its projected image in image plane onto the ground plane and then a base rectangle on the ground is determined by using the intuition that touched parts of the object on the ground should appear at lower part of the silhouette. The base rectangle is adjusted and extended until a derived bounding box from it can enclose the general object sufficiently. Height of the bounding box is also determined enough to enclose the general object. When the general object looks like a round-shaped object, a bounding cylinder that encloses the bounding box minimally is selected instead of the bounding box. A bounding solid can be utilized to localize a 3D object on the ground and to roughly estimate its volume. Usefulness of our approach is presented with experimental results on real image objects and limitations of our approach are discussed.

  • PDF

Study on the improvement of microdialysis method for measuring brain amino acids in systemic morphine treated rats (Morphine을 전신투여한 랫드의 뇌에서 분비되는 amino acid 성 신경전달물질 측정을 위한 미세투석법의 개선에 관한 연구)

  • Lee, Jang-hern;Beitz, Alvin J
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.535-543
    • /
    • 1998
  • In the present study, we designed and constructed new microdialysis probe in order to improve the efficacy and accuracy of microdialysis method. In addition, extracellular concentrations of GABA, glutamate, aspartate and glycine were monitored with new designed probe in the lateral portion of the ventrocaudal periaqueductal gray using unanesthetized and unrestrained rats. Furthermore, the effect of opiates on release of these amino acids, especially GABA, was analyzed by measuring their concentration in PAG dialysates following veratridine administration in the presence of systemic morphine. The results were summerized as follow : 1. The damaging rates of 1.0mm or 1.5mm window probe were 12.5% or 42.8%, respectively. In the group using 1.5mm window probe, the damaging area was extended into mesencephalic aqueduct because of microdialyzing pressure. 2. Because of the unique design of our probes with an opening facing one side, dialysis occurs in a hemisphere($600{\mu}m$ in mediolateral direction and $100{\mu}m$ in opposite side of the dialysis probe) around the opening rather than in a spherical shaped configuration which is typical of most commercially available probe designs. 3. Glutamate, taurine and glycine were present in the highest concentration in the dialysate sample obtained before treatment with veratridine, whereas, aspartate and GABA were present in the lowest concentration. 4. The concentration of all 5 amino acids increased significantly following $75{\mu}m$ veratridine perfusion into lateral ventrocaudal PAG. 5. There was no significant difference between basal and peak amino acid concentrations according to window sizes. 6. Morphine had no effect on baseline concentrations of amino acids in dialysates obtained from the lateral PAG as compared to saline treated controls. However, following veratridine treatment, morphine selectively affected GABA release in the lateral ventrocaudal PAG as compared to saline treated controls. These results suggest that GABAergic interneurons in the PAG are inhibited by opioids. Therefore, endogenous enkephalins or endorphins may directly inhibit intrinsic GABAergic intemeurons and block their tonic inhibition of PAG-NMR projection neurons. Moreover, new designed probes demonstrate improved efficiency and accuracy in collecting samples as compared to commercial types of microdialysis probes.

  • PDF

ELECTRON MICROSCOPIC STUDY OF SLOWLY ADAPTING PERIODONTAL MECHANORECEPTIVE PRIMARY AFFERENT FIBERS WITHIN THE SUBNUCLEUS ORALIS OF THE CAT (서순응형 치근막 일차구심성 신경섬유 종말부의 Subnucleus oralis에서의 시냅스 양상에 관한 전자현미경적 연구)

  • Kim, Moo-Jung;Bae, Yong-Chul;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.4
    • /
    • pp.281-301
    • /
    • 1993
  • It was revealed that the morphology and projection pattern of terminal arbors from single primary afferent are different among distinct fiber types, functional types and the different subdivision of trigeminal sensory nucleus complex(TSNC). But it was not identified the ultrastructural morphology and synaptic connections of terminal arbors from each primary afferent within TSNC. So we employed the intra-axonal horseradish peroxidase(HRP) injection technique to define the terminal arbors of primary afferent fiber from slowly adapting mechanoreceptors in the periodontal ligament of the cat, and examined 66 labeled terminal arbors within the rostrodorsomedial part(Vo.r) of the trigeminal nucleus oralis, electromicroscopically with 90nm serial sections. All the boutons labelled with HRP contained clear, spherical and uniform sized synaptic vesicles(diameter : $47.66{\pm}3.58nm$ ). Most of the labelled boutons were boutons en passant type and they were connected by unmyelinated axonal strand. In which neurofilament and microtubule was not developed but occasionally contained synaptic vesicle in contrast to the myelinated axon. The size of the labelled bouton was relatively small(long diameter : $1.46{\pm}0.24{\mu}m$, short diameter $0.85{\pm}0.26{\mu}m$, average diameter $1.15{\pm}0.24{\mu}m$) and the shape of which varied from dome to elongated shape, but scalloped glomerulus shape was not developed. Each primary ending in Vo.r made synapse with one or two neuronal propiles(average : $1.11{\pm}0.31$), of which, 89.4% of labelled boutons made synapse with only one neuronal pro pile, the remainder, 10.6% of labelled boutons, made synapse with two neuronal propile. So characteristically they made very simple synapse. Most of labelled boutons(80.03%) made asymmetrical synapse only with dendritic shaft or spine, and 6.1% of labelled boutons received symmetrical synapse from pleomorphic vesicle containing axonal ending(p-ending). So presynaptic inhibiton was relatively scarce. Synaptic triad, in which a p-ending is presynaptic both pre-and post-synaptic element of the axo-dendritic contact from the labelled primary ending was not observed.

  • PDF

Feasibility of Automated Detection of Inter-fractional Deviation in Patient Positioning Using Structural Similarity Index: Preliminary Results (Structural Similarity Index 인자를 이용한 방사선 분할 조사간 환자 체위 변화의 자동화 검출능 평가: 초기 보고)

  • Youn, Hanbean;Jeon, Hosang;Lee, Jayeong;Lee, Juhye;Nam, Jiho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.258-266
    • /
    • 2015
  • The modern radiotherapy technique which delivers a large amount of dose to patients asks to confirm the positions of patients or tumors more accurately by using X-ray projection images of high-definition. However, a rapid increase in patient's exposure and image information for CT image acquisition may be additional burden on the patient. In this study, by introducing structural similarity (SSIM) index that can effectively extract the structural information of the image, we analyze the differences between daily acquired x-ray images of a patient to verify the accuracy of patient positioning. First, for simulating a moving target, the spherical computational phantoms changing the sizes and positions were created to acquire projected images. Differences between the images were automatically detected and analyzed by extracting their SSIM values. In addition, as a clinical test, differences between daily acquired x-ray images of a patient for 12 days were detected in the same way. As a result, we confirmed that the SSIM index was changed in the range of 0.85~1 (0.006~1 when a region of interest (ROI) was applied) as the sizes or positions of the phantom changed. The SSIM was more sensitive to the change of the phantom when the ROI was limited to the phantom itself. In the clinical test, the daily change of patient positions was 0.799~0.853 in SSIM values, those well described differences among images. Therefore, we expect that SSIM index can provide an objective and quantitative technique to verify the patient position using simple x-ray images, instead of time and cost intensive three-dimensional x-ray images.