• Title/Summary/Keyword: spherical indentation

Search Result 60, Processing Time 0.027 seconds

A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations (α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구)

  • Yeri Jung;Jin Ho Kim;Taeil Yi
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

Interfacial modulus mapping of layered dental ceramics using nanoindentation

  • Theocharopoulos, Antonios L;Bushby, Andrew J;P'ng, Ken MY;Wilson, Rory M;Tanner, K Elizabeth;Cattel, Michael J
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.479-488
    • /
    • 2016
  • PURPOSE. The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS. YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A $5{\mu}m$ (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS. A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of $40{\mu}m$ in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION. The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.

Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics (분무건조 및 대기 플라즈마 용사에 의한 탄화규소 세라믹스용 내환경 코팅재의 제조 및 평가)

  • Feng, Fan Jie;Moon, Heung Soo;Kwak, Chan Won;Park, Ji Yeon;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • Environmental barrier coatings (EBCs) are used to protect SiC-based ceramics or composites from oxidation and corrosion due to reaction with oxygen and water vapour at high temperatures above $1000^{\circ}C$. Mullite ceramics have been studied for environmental barrier coatings for Si-based ceramics. More recently, rare earth silicate ceramics have been identified as more water vapour-resistant materials than mullite for environmental barrier coatings. In this study, we fabricate mullite and yttrium silicate ceramics by an atmospheric plasma spray coating method using spherical granules fabricated by spray drying. As a result, EBCs with thicknesses in the range of $200-300{\mu}m$ are successfully fabricated without any macroscopic cracks or interfacial delamination. Phase and microstructure analysis are conducted, and the basic mechanical properties, such as hardness and indentation load-displacement curves are evaluated.

Nanoindentation on the Layered Ag/Cu for Investigating Slip of Misfit Dislocation (나노인덴테이션 해석을 통한 Ag/Cu층에서 발생하는 Misfit 전위의 slip 특성에 대한 연구)

  • Trandinh, Long;Ryu, Yong-Moon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.17-24
    • /
    • 2011
  • The EAM simulation of nanoindentation was performed to investigate misfit dislocation slip in the Ag/Cu. The film layer, whose thickness in the range of 2-5nm, was indented by a spherical indenter with the N$\'{o}$se-Hoover thermostat condition. The simulation shows that the indentation position relative to misfit dislocation (MFD) has the effect on the dislocation, glide up or cross slip, for Ag film layer thickness less than 4 nm. Elastic energy variation during MFDs slip was revealed to be a key factor for the softening of Ag/Cu. The critical film layer thickness was evaluated for each case of Ag/Cu according to the spline extrapolation technique.

A Study on the Time-Dependent Deformation Behaviors of PMMA in Nanoindentation Process for Hyperfine Pit Structure Fabrication (극미세 점 구조체 제작을 위한 나노압입 공정에서 PMMA의 시간의존적 변형거동에 관한 연구)

  • Kim Hyun-Il;Kang Chung-Gil;Youn Sung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.62-70
    • /
    • 2005
  • The nanoindenter and AFM have been used for nanofabrication, such as nanolithography, nanowriting, and nanopatterning, as well as measurement of mechanical properties and surface topology. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is very important to make indents of desired morphology (shape, size and depth). Indents of different shapes can be obtained by using indenters of different geometries such as a cube comer and conical and spherical tips. The depth and size of indents can be controlled by making indentations at different indentation loads. However, in case of viscoplastic viscoelastic materials such as polymethylmethacrylate (PMMA) the time dependent deformation (TDD) should also be considered. In this study, the effect of process parameters such as loading rate and hold-time at peak load on the indent morphology (maximum penetration depth, elastic recovery, transient creep recovery, residual depth pile-up height) of PMMA were studied for hyperfine pattern fabrication.

Fine Structure of Neurons and Synaptic Organization in Pallidum of the Cat (고양이 담창구 (Globus Pallidus)의 신경원과 연접기구에 대한 미세구조)

  • Park, W.B.;C.Y. Yun
    • The Korean Journal of Zoology
    • /
    • v.26 no.2
    • /
    • pp.107-123
    • /
    • 1983
  • The globus pallidus of normal cats were prepared for electron microscopic study following perfusion with a mixture of 1% paraformaldehyde and 1% glutaraldehyde solution. Neurons of two size categories were identified in 1 $\\mu$m araldite sections and their ultrastructural characteristics were studied in adjacent thin section. 1. Large neurons ($30 \\mum \\times 45 \\mum$ in diameter) had extensive areas of rough surfaced endoplasmic reticulm, abundant perinuclear Golgi complex, numerous mitochondria and lipofusin granule, and had a large spherical nucleus with shallow indentation of nuclear manbrane. Small neurons ($17 \\mum \\times 27 \\mum$ in diameter) had poorly rough surfaced endoplasmic reticulum, moderate number of mitochondria and randomly distributed Golgi complex. The nuclear envelope of this cell frequently showed multiple deep invagination. 2. Three types of axo-somatic synapses were identified on the basis of the size and shape of vesicle in the axon terminal and the symmetrical or asymmetrical thickening at the synaptic site. Type I synaptic terminal shows an even distribution of round and oval synaptic vesicles, and has a symmetrical synaptic thickening. Type II axon terminals reveal mostly round and pleomorphic vesicles and a few vesicles were localized near the presynaptic membrane in pale axoplasm and its synaptic thickening were symmetric. Type III axon terminals contain round vesicles, which were aggregated in the axoplasm, and has a asymmetrical synaptic thickening. 3. The majority of axo-somatic contact with the large and small neurons were type I, and type II and III synapes were rare.

  • PDF

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

Contact fatigue and strength degradation in dental ceramics (치아용 세라믹스에서의 접촉피로 및 강도저하)

  • 정연길;이수영;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.527-533
    • /
    • 1999
  • Hertzian indentation tests with spherical indenters in water were conducted to examine the contact fatigue in three dental ceramics, such as feldspathic porcelain, micaceous glass-ceramic (MGC) and glass-infiltrated alumina, which was used as dental restorations, and evaluated the effect of contact damage on strength. Initial damage was dependent of microstructure, showing cone cracks of brittle behavior in the feldspathic porcelain and deformation of quasi-plastic behavior in the MGC, with an intermediate case in the glass-infiltrated alumina. However, as increasing the number of cyclic loading (n=1~n =$10^6$)all materials showed an abrupt strength degradation, at which fracture was originated from damage in the contact fatigue. There were two strength degradation with increasing the number of cyclic loading in specific loads (200N, 500N, 1000N):first was from the cone cracks, and second was from the radial cracks created by cyclic loading. The radial cracks, once formed, led to rapid degradation in strength properties, Finally the material was failed at the high number of cyclic loading. Strength degradation with indentation load at fixed number of cyclic loading indicated that the feldspathic porcelain should be highly damage tolerant to the contact fatigue.

  • PDF

Effects of Heat Treatment on Secondary Phase Formation and Nanoindentation Creep Behavior of Nanocrystalline CoCrFeMnNi High-entropy alloy (나노결정립 CoCrFeMnNi 고엔트로피합금의 열처리에 따른 이차상 형성 및 나노압입 크리프 거동 변화 연구)

  • Dong-Hyun Lee;Jae-il Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.128-136
    • /
    • 2023
  • In this study, the effects of heat treatment on the nano-scale creep behavior of CoCrFeMnNi high-entropy alloy (HEA) processed by high-pressure torsion (HPT) was investigated through nanoindentation technique. Nanoindentation experiments with a Berkovich indenter were performed on HPT-processed alloy subjected to heat treatment at 450℃, revealing that the hardness of the HPT-processed alloy (HPT sample) significantly increased with the heat treatment time. The heat treatment-induced microstructural change in HPT-processed alloy was analyzed using transmission electron microscopy, which showed the nano-sized Cr-, NiMn-, and FeCo-rich phases were formed in the HPT-processed alloy subjected to 10 hours of heat treatment (HPT+10A sample). To compare the creep behavior of HPT and HPT+10A samples, constant load nanoindentation creep experiments were performed using spherical indentation indenters with two different radii. It was revealed that the predominant mechanism for creep highly depended on the applied stress level. At low stress level, both HPT and HPT+10A samples were dominated by Coble creep. At high stress level, however, the mechanism transformed to dislocation creep for HPT sample, but continued to be Coble creep for HPT+10A sample, leading to higher creep resistance in the HPT+10A sample.

MORPHOLOGY OF THE TERMINAL ARBORS FROM THE MASSETERIC MUSCLE SPINDLE AFFERENTS IN THE TRIGEMINAL MOTOR NUCLEUS (삼차신경 운동핵에서 교근 근방추 구심성 신경섬유 종말지의 미세구조)

  • Lee, Kyung-Woo;Bae, Yong-Chul;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.3
    • /
    • pp.321-347
    • /
    • 1994
  • Muscle spindle afferents from masseter muscle were labelled by the intra-axonal HRP injection and were processed for light microscopic reconstruction. Regions containing terminal arbors scattered in the central portion of the masseteric motor neuron pool (type I a) and those restricted to 2-3 small portion of it (type II) were selected and processed for electronmicroscopic analysis with serial sections. The shape of the labelled boutons was dome or elongated shape. Scalloped or glomerulus shape with peripherial indentation containing pre or postsynaptic neuronal propiles, which is occasionally found in the trigeminal main sensory nucleus and spinal dorsal horn, was not observed. Both type Ia and type II boutons had pale axoplasm and contained clear, spherical vesicles of uniform size(dia : 49-52nm) and occasionally large dense cored vesicles(dia : 87-118nm). The synaptic vesicles were evenly distributed throughout the boutons although there was a slight tendency of vesicles to accumulate at the presynaptic site. The average of short and long diameter(short D. + long D./2) of type I a bouton was smaller than that of type II bouton. All the labelled boutons, which showed prominent postsynaptic density, large synaptic area and multiple synaptic contact, made asymmetrical synaptic contact with postsynaptic neuronal propiles. Most of the type Ia and type II boutons made synaptic contact with only one neuronal propile and boutons which shows synaptic contact or more neuronal propiles was not observed. Most of the type Ia boutons(87.2%) were presynaptic to the soma or proximal dendrite and a few remainder(12.8%) made synaptic contact with dendritic shaft or distal dendrite. In contrast, majority of type II boutons showed synaptic contact with dendritic shaft and remainder with soma or proximal dendrite. In conclusion, terminal boutons which participate in the excitatory monosynaptic jaw jerk reflex made synaptic contact with more proximal region of the neuron, and showed very simple synaptic connection, compared with those from the primary afferenst in the other region of the central nervous system such as spinal dorsal horn and trigeminal main sensory nucleus which assumed to be responsible for the mediating pain, tactile sensation, sensory processing or sensory discrimination.

  • PDF