• Title/Summary/Keyword: spherical geometry

Search Result 115, Processing Time 0.028 seconds

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

Correlation Development on Critical Power in a Spherical Narrow Gap (구형 간극에서의 임계 출력에 대한 상관식 개발)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik;Kim, Hee-Dong;Jeong, Ji-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.235-240
    • /
    • 2001
  • The CHFG (Critical Heat Flux in Gap) test results have been evaluated to quantify the critical power in hemispherical narrow gaps and a new correlation has been developed. The CHFG test results have shown that increases in the gap thickness and pressure lead to an increase in critical power. The pressure effect on the critical power was found to be much milder than predictions by CHF correlations of other researches. From the CHFG test results, a new correlation on critical power in the hemispherical gap has been developed using the non-dimensional parameters as follows: $$\frac{qCHF}{{\rho}g^hfg}{\cdot}4\sqrt{\frac{{\rho}_g^2}{g{\sigma}{\Delta}{\rho}}=\frac{0.1042}{1+0.1375({\rho}g/{\rho}l)^{0.21}(D/s)}$$ The developed correlation has been expanded to apply the spherical geometry using the Siemens/KWU's correlation.

  • PDF

Analysis of Orthotropic Spherical Shells under Symmetric Load Using Runge-Kutta Method (Runge-Kutta법을 이용한 축대칭 하중을 받는 직교 이방성 구형쉘의 해석)

  • Kim, Woo-Sik;Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.115-122
    • /
    • 2002
  • It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.

  • PDF

Surface Quality Improvements on the Spherical Shaped Mold using Ball End Milling (볼 엔드밀을 이용한 금형 구면 가공의 표면품질 향상에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.71-76
    • /
    • 2020
  • Various machining methods are being studied to improve the processing quality of the spherical R shape in press die. In this paper, we confirmed that changes in machining quality were associated with changes in cutting direction, path, and cutting angle, which are commonly used in the machining of molds. We obtained a surface roughness graph with each condition change in one specimen using an instrument that measured geometry and surface roughness simultaneously. The results of the study showed that the best surface roughness in the finish cut of the spherical surface was obtained using upward pick feed machining.

Stability analysis of the ball after contacting with the earth in the volleyball game: A multi-physics simulation

  • Yang Sun;Yuhan Lin;Yuehong Ma
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.809-823
    • /
    • 2023
  • In this work, dynamic stability analysis of the ball after contacting with the earth in the volleyball game is presented. Via spherical shell coordinate, the governing equations and general boundary conditions of the ball after contacting with the earth in the volleyball game is studied. Via Comsol multi-physics simulation, some results are presented and a verification between the outcomes is studied. Harmonic differential quadrature method (HDQM) is utilized to solve the dynamic equations with the aid of boundary nodes of the current spherical shell structure. Finally, the results demonstrated that thickness, mass of the ball and internal pressure of the ball alters the frequency response of the structure. One important results of this study is influence of the internal pressure. Higher internal pressure causes lower frequency and hence reduces the stability of the ball.

Efficient Sphere Partition Method for Finding the Maximum Intersection of Spherical Convex Polygons (구 볼록 다각형들의 최대 교차를 찾기 위한 효율적인 구 분할 방식)

  • 하종성
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 2001
  • The maximum intersection of spherical convex polygons are to find spherical regions owned by the maximum number of the polygons, which is applicable for determining the feasibility in manufacturing problems such mould design and numerical controlled machining. In this paper, an efficient method for partitioning a sphere with the polygons into faces is presented for the maximum intersection. The maximum intersection is determined by examining the ownerships of partitioned faces, which represent how many polygons contain the faces. We take the approach of edge-based partition, in which, rather than the ownerships of faces, those of their edges are manipulated as the sphere is partitioned incrementally by each of the polygons. Finally, gathering the split edges with the maximum number of ownerships as the form of discrete data, we approximately obtain the centroids of all solution faces without constructing their boundaries. Our approach is analyzed to have an efficient time complexity Ο(nv), where n and v, respectively, are the numbers of polygons and all vertices. Futhermore, it is practical from the view of implementation since it can compute numerical values robustly and deal with all degenerate cases.

  • PDF

Extension for Downward Continuation of the Method of "Upward Continuation of Potential Field on Spherical Patch Area" ("구면부분지역에서 퍼텐셜마당의 상향연속"의 하향연속 확장적용)

  • Na, Sung-Ho;Chung, Tae Woong;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.59-62
    • /
    • 2013
  • We formerly reported a new method for the upward continuation of potential field on spherical patch area including Earth's curvature, which has been neglected in most studies on rectangular area with flat Earth assumption. This new method is applicable to downward continuation as well by only assigning corresponding value for the ratio of two radii; $r_2/r_1$, i.e., target radius $r_2$ versus datum radius $r_1$. In addition, the inherent problem of this method due to spherical surface geometry is described, and its one possible remedy is given.

Frequency analysis of liquid sloshing in prolate spheroidal containers and comparison with aerospace spherical and cylindrical tanks

  • Mohammad Mahdi Mohammadi;Hojat Taei;Hamid Moosazadeh;Mohammad Sadeghi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.439-455
    • /
    • 2023
  • Free surface fluid oscillation in prolate spheroidal tanks has been investigated analytically in this study. This paper aims is to investigate the sloshing frequencies in spheroidal prolate tanks and compare them with conventional cylindrical and spherical containers to select the best tank geometry for use in space launch vehicles in which the volume of fuel is very high. Based on this, the analytical method (Fourier series expansion) and potential fluid theory in the spheroidal coordinate system are used to extract and analyze the governing differential equations of motion. Then, according to different aspect ratios and other parameters such as filling levels, the fluid sloshing frequencies in the spheroidal prolate tank are determined and evaluated based on various parameters. The natural frequencies obtained for a particular tank are compared with other literature and show a good agreement with these results. In addition, spheroidal prolate tank frequencies have been compared with sloshing frequencies in cylindrical and spherical containers in different modes. Results show that when the prolate spheroidal tank is nearly full and in the worst case when the tank is half full and the free fluid surface is the highest, the prolate spheroidal natural frequencies are higher than of spherical and cylindrical tanks. Therefore, the use of spheroidal tanks in heavy space launch vehicles, in addition to the optimal use of placement space, significantly reduces the destructive effects of sloshing.

Finite Element Analysis of the Neutron Transport Equation in Spherical Geometry (구형에서 중성자 수송방정식의 유한요소법에 의한 해석)

  • Kim, Yong-Ill;Kim, Jong-Kyung;Suk, Soo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.319-328
    • /
    • 1992
  • The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation.

  • PDF