• Title/Summary/Keyword: spheres

Search Result 717, Processing Time 0.03 seconds

Photoluminescence Characteristics of the Light-Emitting Chromophores Obtained from Organic-Inorganic Hybrid Silica Spheres

  • Park, Eun-Hye;Jeong, Chang-Gi;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.93-97
    • /
    • 2016
  • Light-emitting chromophores have been separated from silica spheres modified the surface with 3-(trimethoxysilyl)propylmethacrylate (TMSPM). The photoluminescence characteristics of the chromophores were investigated with various excitation wavelengths. The TMSPM was attached to the surface of silica spheres at $75^{\circ}C$. Large number of round shaped particles of the TMSPM was on the surface of silica spheres after 3 h reaction. The TMPSM was completely covered on the surface of the spheres after 6 h reaction. The surface modified silica spheres were soaked into acetone and stored for 20 days at ambient condition. The solution color slowly changed from light yellow to deep yellow with the increase of the storing time. The FTIR absorption peaks at 3348, 2869, 2927, 1715, 1453/1377, 1296, and $1120cm^{-1}$ represent C-OH, $R-CH_3$, $R_2-CH_2$, -C=O, C-H, C=C-H, and Si-O-Si absorption, respectively. The FTIR absorption peak at $1715cm^{-1}$ representing the ester -C=O stretching vibration for silica spheres stored for 20 days was increased compared with the spheres without aging. The UV-visible absorption peaks were at 4.51 eV (275 nm) and 3.91 eV (317 nm). There were two luminescence peaks at 2.51 eV (495 nm) and 2.25 eV (550 nm). The emission at 2.51 eV was dominant peak when the excitation energy was higher than 2.58 eV, and emission at 2.25 eV became dominant peak when the excitation energy was lower than 2.58 eV.

Synthesis of Hollow Carbon Spheres with Various Diameters and Their Lithium Storage Properties (다양한 직경의 속이 빈 탄소구체의 제조 및 리튬 저장 특성)

  • Seulgi Shin;Hyeokrae Cho;Yong-Jae Jung;Sang-Mo Koo;Jong-Min Oh;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • The carbonaceous materials have attracted much attention for utilization of anode materials for lithium-ion batteries. Among them, hollow carbon spheres have great advantages (high specific capacity and good rate capability) to replace currently used graphite anode materials, due to their unique features such as high surface areas, high electrical conductivities, and outstanding chemical and thermal stability. Herein, we have synthesized various sizes of hollow carbon spheres by a facile hardtemplate method and investigated the anode properties for lithium-ion batteries. The obtained hollow carbon spheres have uniform diameters of 350 ~ 600 nm by varying the template condition, and they do not have any cracks after the optimization of the process. Increasing the diameter of hollow carbon spheres decreases their specific capacities, since the larger hollow carbon spheres have more useless spaces inside that could have a disadvantage for lithium storage. The hollow carbon spheres have outstanding rate and cyclic performance, which is originated from the high surface area and high electrical properties of the hollow carbon spheres. Therefore, hollow carbon spheres with smaller diameters are expected to have higher specific capacities, and the noble channel structures through various doping approaches can give the great possibility of high lithium storage properties.

Calibration of a Chirp Sonar System Using Seven Tungsten Carbide Spheres of Different Sizes (크기가 다른 7개의 탄화 텅스텐 구를 이용한 Chirp 소너 시스템의 교정)

  • Lee, Dae-Jae;Lee, Kyounghoon;Jung, Bong-Kyu;Kang, Hee-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.207-217
    • /
    • 2022
  • The accurate calibration of broadband echo sounders is essential for providing high quality acoustic information for fisheries applications. The increased range resolution of broadband echo sounder systems improves the detection and characterization of targets near boundaries, such as fish near the seabed. Most echo sounder systems are calibrated using tungsten-carbide (WC) spheres. For accurate calibration, it is necessary to select WC spheres of optimized diameters used frequently to calibrate echo sounder systems. For these purposes, the measured and simulated target strength (TS) data for seven WC spheres of different sizes were compared across a bandwidth of 100-200 kHz. The frequency-dependent TS pattern for the specular wave measured from two WC spheres using the fractional Fourier transform was also estimated and analyzed. Comparative results are presented for all the spheres and the best average precision of 0.15 dB was obtained for the 22 mm WC sphere.

Convergent Properties of Fuzzy Spheres (퍼지 구의 수렴성질)

  • Kim, Mi-Hye;Kim, Tea-Soo;Kim, Mi-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.4
    • /
    • pp.103-110
    • /
    • 2003
  • In this paper, we investigate the properties of fuzzy spheres and estabilish convergence theorems of them. We expect that convergence theorems of fuzzy spheres may be useful for computer graphics and patten recognition.

  • PDF

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres

  • Jeong, Seong Yong;Choi, Seung Ho;Yoon, Ji-Wook;Won, Jong Min;Kang, Yun Chan;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.151-154
    • /
    • 2015
  • The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.

Topology Representation for the Voronoi Diagram of 3D Spheres

  • Cho, Young-Song;Kim, Dong-Uk;Kim, Deok-Soo
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 2005
  • Euclidean Voronoi diagram of spheres in 3-dimensional space has not been explored as much as it deserves even though it has significant potential impacts on diverse applications in both science and engineering. In addition, studies on the data structure for its topology have not been reported yet. Presented in this, paper is the topological representation for Euclidean Voronoi diagram of spheres which is a typical non-manifold model. The proposed representation is a variation of radial edge data structure capable of dealing with the topological characteristics of Euclidean Voronoi diagram of spheres distinguished from those of a general non-manifold model and Euclidean Voronoi diagram of points. Various topological queries for the spatial reasoning on the representation are also presented as a sequence of adjacency relationships among topological entities. The time and storage complexities of the proposed representation are analyzed.

Fabrication of Polymeric Hollow Spheres Having Macropores by a Quenching and Sublimation Process

  • Im, Sang-Hyuk;Park, O-Ok;Kwon, Moo-Hyun
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.518-522
    • /
    • 2003
  • We fabricated polymeric hollow spheres having macropores, which combine the advantageous properties of porous materials and hollow spheres. To fabricate such spheres, a polystyrene/methylmethacrylate solution was dispersed in water by vigorously stirring and then the suspension was quenched using liquid nitrogen. Water and methyl methacrylate present in the quenched suspension were readily sublimated by freeze-drying. Conclusively, the hollow-sphere structure and the macropores of its shell were created by the processes of liquid nitrogen-quenching and sublimation of methyl methacrylate domains within the shell, respectively.

Numerical Simulation of Flows Past Two Spheres (I) -Two Spheres Aligned in the Streamwise Direction- (2개의 구를 지나는 유동에 대한 수치 해석적 연구 (I) -유동방향으로 놓여진 2개의 구-)

  • Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-254
    • /
    • 2005
  • A parametric study on the interactions of two spheres aligned in the streamwise direction is carried out using an immersed boundary method. The numerical results for the case of single sphere for the range of $Rs{\le}300$ are in good agreement with other authors' experimental and numerical results currently available. Then, our main investigation is focused on identifying the change of the vortical structures in the presence of a nearby sphere aligned in the streamwise direction for the range $Re{\le}300$. It turns out that significant changes in physical characteristics are noticed depending on how close the two spheres are. In this paper, not only quantitative changes in the key physical parameters such as the force coefficients, but also qualitative changes in vortex structures are reported and analyzed.

Fabrication of Carbon Spheres by hydrothermal synthesis and evaluation of characteristics (수열 합성법을 이용한 구형 탄소의 제조 및 특성 평가)

  • Lee, Eun-Jung;Park, Soo-Gil;KIM, Han-Ju;Kim, Hong-il
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.165-166
    • /
    • 2014
  • The electric double-layer capacitors (EDLCs) are consisted of electrodes, electrolyte and separator. Among of them, electrode materials are generally used carbon materials. In this study, we experimented for the purpose of fabrication of carbon spheres from various carbohydrates as electrode material. Carbon spheres were prepared by hydrothermal synthesis process. Carbon spheres' morphology had been examined using scanning electron microscopy (SEM) and specific surface area had been examined using BET analysis. To confirm the possibilities of carbon spheres as EDLC's electrode materials, we conducted electrochemical tests such as cyclic voltammetry (CV), impedance and cycle ability.

  • PDF

Ideal Classes and Cappell-Shaneson Homotopy 4-Spheres

  • Min Hoon Kim;Shohei Yamada
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.373-411
    • /
    • 2023
  • Gompf proposed a conjecture on Cappell-Shaneson matrices whose affirmative answer implies that all Cappell-Shaneson homotopy 4-spheres are diffeomorphic to the standard 4-sphere. We study Gompf conjecture on Cappell-Shaneson matrices using various algebraic number theoretic techniques. We find a hidden symmetry between trace n Cappell-Shaneson matrices and trace 5 - n Cappell-Shaneson matrices which was suggested by Gompf experimentally. Using this symmetry, we prove that Gompf conjecture for the trace n case is equivalent to the trace 5 - n case. We confirm Gompf conjecture for the special cases that -64 ≤ trace ≤ 69 and corresponding Cappell-Shaneson homotopy 4-spheres are diffeomorphic to the standard 4-sphere. We also give a new infinite family of Cappell-Shaneson spheres which are diffeomorphic to the standard 4-sphere.