• Title/Summary/Keyword: sperm activation

Search Result 62, Processing Time 0.022 seconds

Production of Intracellular Calcium Oscillation by Phospholipase C Zeta Activation in Mammalian Eggs

  • Yoon, Sook-Young;Kang, Da-Won
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • Egg activation is a crucial step that initiates embryo development upon breaking the meiotic arrest. In mammalian, egg activation is accomplished by fusion with sperm, which induces the repeated intracellular $Ca^{2+}$- increases ($[Ca^{2+}]_i$ oscillation). Researches in mammals support the view of the $[Ca^{2+}]_i$ oscillation and egg activation is triggered by a protein factor from sperm that causes $[Ca^{2+}]_i$ release from endoplasmic reticulum, intracellular $[Ca^{2+}]_i$ store, by persistently activation of phosphoinositide pathway. It represents that the sperm factor generates production of inositol trisphosphate ($IP_3$). Recently a sperm specific form of phospholipase C zeta, referred to as PLCZ was identified. In this paper, we confer the evidence that PLCZ represent the sperm factor that induces $[Ca^{2+}]_i$ oscillation and egg activation and discuss the correlation of PLCZ and infertility.

Effects of Sperm Membrane Disruption and Electrical Activation of Oocytes on In vitro Development and Transgenesis of Porcine Embryos Produced by Intracytoplasmic Sperm Injection

  • Shim, Sang Woo;Kim, Young Ha;Lee, Hoon Taek;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.358-363
    • /
    • 2008
  • The intracytoplasmic sperm injection (ICSI) procedure has recently been utilized to produce transgenic animals and may serve as an alternative to the conventional pronuclear microinjection in species such as pigs whose ooplasm is opaque and pronuclei are often invisible. In this study, the effects of sperm membrane disruption and electrical activation of oocytes on in vitro development and expression of transgene green fluorescent protein (GFP) in ICSI embryos were tested to refine this recently developed procedure. Prior to ICSI, sperm heads were treated with Triton X-100+NaCl or Triton X-100+NaCl+NaOH, to disrupt membrane to be permeable to exogenous DNA, and incubated with linearized pEGFP-N1 vector. To induce activation of oocytes, a single DC pulse of 1.3 kV/cm was applied to oocytes for $30{\mu}sec$. After ICSI was performed with the aid of a micromanipulator, in vitro development of embryos and GFP expression were monitored. The chemical treatment to disrupt sperm membrane did not affect the developmental competence of embryos. 40 to 60% of oocytes were cleaved after injection of sperm heads with disrupted membrane, whereas 48.6% (34/70) were cleaved without chemical treatment. Regardless of electrical stimulation to induce activation, oocytes were cleaved after ICSI, reflecting that, despite sperm membrane disruption, the perinuclear soluble sperm factor known to mediate oocyte activation remained intact. After development to the 4-cell stage, 11.8 (2/17, Triton X-100+NaCl+NaOH) to 58.8% (10/17, Triton X-100+NaCl) of embryos expressed GFP. The expression of GFP beyond the stage of embryonic genome activation (4-cell stage in the pig) indicates that the exogenous DNA might have been integrated into the porcine genome. When sperm heads were co-incubated with exogenous DNA following the treatment of Triton X-100+NaCl, GFP expression was observed in high percentage (58.8%) of embryos, suggesting that transgenic pigs may efficiently be produced using ICSI.

Sperm Transfer and Sperm Activation in Tasar Silkmoth, Antheraea Mylitta

  • G. Ravikumar;H. Rajeswary;N.G. Ojha;S.S. Sinha
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.1
    • /
    • pp.33-37
    • /
    • 1998
  • Two types of sperm, apyrene and eupyrene, are identified in A. mylitta. The sperm in the adult moth are motionless in seminal vesicles. At the time of ejaculation they received a secretion from male ejaculatory duct that renders them motile. The dissociation of eupyrene bundles, eupyrene sperm motility and the sequence of events of sperm migration in both sexes are described in the present paper.

  • PDF

A Sperm Factor Inducing Second Polar Body Formation in Mouse Secondayy Oocyte

  • Park, Y.S;Min, S.H.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.369-375
    • /
    • 2002
  • A sperm factor(s) for oocyte activation during fertilization has not been clearly identified. In this study to elucidate an oocyte activation factor(s), mouse sperm were sonicated and ultra-filtered with a 30 kilo-daltons (KD) cutoff membrane and the ultra-filtrate was then sequentially fractionated over Suporose 12 column and Superdex column, The recovered fractions were micro-injected into Mⅱmouse oocytes and second polar body formation (PBF) was examined. Suporose fraction RV2.10 prepared from sperm extract significantly increased PBF. Of Superdex fractions re-separated from Suporose fraction RV2.10, fraction RV2.12 also had the strongest PBF activity. By analyzing with micro-reverse phase column (URPC), the Superdex fraction RV2.12 appeared to be glutamic acid. In microinjection test, glutamic acid significantly increased PBF. This study suggests that glutamic acid should be a type of sperm factor for second polar body formation related to oocyte activation.

Cell Signaling Mechanisms of Sperm Motility in Aquatic Species

  • Kho, Kang-Hee;Morisawa, Masaaki;Cho, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.665-671
    • /
    • 2005
  • Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of cAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$ and cAMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility in the ascidians and salmonid fishes has drawn much attention. In the ascidians, the sperm-activating and attracting factors from unfertilized egg require extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior toward the egg. On the other hand, the cAMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease of the environmental $K^+$ concentration surrounding the spawned sperm causes $K^+$ efflux and $Ca^{2+}$ influx through the specific $K^+$ channel and dihydropyridine-sensitive L-/T-type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization. The membrane hyperpolarization induces synthesis of cAMP, which triggers further cell signaling processes, such as cAMP-dependent protein phosphorylation, to initiate sperm motility in salmonid fishes. This article reviews the studies on the physiological mechanisms of sperm motility and its cell signaling in aquatic species.

Mechanisms for the Initiation of Sperm Motility (정자운동 개시 기구)

  • Kho Kang Hee;Kang Kyoung Ho;Chang Young Jin
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of CAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$and cyclic AMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility has been well studied in the ascidians, Ciona intestinalis and C. savignyi and salmonid fishes. In Ciona, whose cell signaling for activation of sperm motility has been established, the sperm-activating and -attracting factor released from unfertilized egg requires extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior of the activated sperm toward the egg. On the other hand, the cyclic AMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease in the environmental Ti concentration surrounding the spawned sperm causes a li efflux and $Ca^{2+}$ influx through the specific $K^{+}$ channel and dihydropyridine-sensitive L-/T- type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization and $Ca^{2+}$ influx. The membrane hyperpolarization synthesizes cyclic AMP, which triggers the luther Process of cell signaling, i.e., cyclic AMP-dependent protein phosphorylation, to initiate sperm motility in salmond fishes.almond fishes.

  • PDF

Development of Porcine Embryos Following Intracytoplasmic Sperm Injection I. Effect of Activation and Sperm Capacitation (ICSI에 의한 돼지 수정란의 발달 I. 난자의 활성화와 정자의 수정능력 획득 유기 효과)

  • Moon S. J.;Ahn S. J.;Kang M. J.;Kim K. H.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.201-206
    • /
    • 2005
  • This study was conducted to investigate the effects of oocyte activation after ICSI and of capacitation of insemination sperm before ICSI in Swine. There was no significant difference on cleavage rate and blastocyst developmental rate treated with ethanol, cycloheximide, or ethanol and cycloheximide jointly between treatment and control groups. However, significantly difference was found on cleavage rate and blastocyst developmental rate treated with caffeine and Ca-ionophore on capacitation of insemination sperm before ICSI (p<0.05). There was no significant difference on pronuclear formation rate and total oocyte activation rate treated with oocyte activation after ICSI between treatment and control groups, but was significant difference on pronuclear formation rate and total oocyte activation rate treated with capacitation treat of sperm (p<0.05).

Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

  • Wijerathne, Tharaka Darshana;Kim, Jihyun;Yang, Dongki;Lee, Kyu Pil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.241-249
    • /
    • 2017
  • Plasma membrane hyperpolarization associated with activation of $Ca^{2+}$-activated $K^+$ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary ${\gamma}^2$-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific $K^+$ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical $BK_{Ca}$ activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting ${\gamma}^2$ subunit, hLRRC52. As previously reported, Slo3 $K^+$ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 $K^+$ current, and internal alkalinization and $Ca^{2+}$ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 $K^+$ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular $Ca^{2+}$. In contrast, elevation of intracellular $Ca^{2+}$ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate $Ca^{2+}$-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.

Effect of Parthenogenesis of Mouse Oocyte following Intracytoplasmic Injection with Human Sperm Extract (마우스 난모세포에 사람정자 추출물의 주입이 단위발생에 미치는 영향)

  • 전은숙;이종인;오종훈;박창식
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • This study was carried out to investigate the effect of intracytoplasmic injection of $Ca^{2+}$ and human sperm extract on the parthenogenetic activation of mouse oocytes. The results obtained were as follows: 1. The mouse oocytes were injected with 10 pl of PBS medium containing 0, 1.7 and 5 mM calcium concentrations, respectively. Activation rate of the oocytes with formation of pronuc1ei and extrusion of the second polar bodies was 14.5, 9.8 and 14.9% at the above calcium concentrations, respectively. There were no significant differences in the activation rates among the calcium concentrations. 2. The mouse oocytes were injected with 10 pl of non-heated human sperm extract, and cultured for 12~15 h in the PBS media with the 0, 1.7 and 5 mM calcium concentrations, respectively. Activation rate(51.8%) of the oocytes at the 1.7 mM calcium concentration was significantly higher than those at the 0 and 5 mM calcium concentrations. 3. The mouse oocytes were injected with 10 pl of heated human sperm extract, and cultured for 12~15 h in the PBS media with the 0, 1. 7 and 5 mM calcium concentrations, respectively. No significant differences were found in the activation rates (11.8~17.0%) among the calcium concentrations. 4. The mouse oocytes were injected with 10 pl of PBS medium, non-heated sperm extract and heated sperm extract, and cultured for 12~15 h in the PBS media with 1.7 mM calcium concentrations, respectively. Activation rate (54.5%) of the oocytes injected with the non-heated sperm extract was highest. There were significant differences in the activation rates among the above injection materials (P<0.05). 5. The mouse oocytes were injected with 10 pl of 1 and 6 days old non-heated sperm extracts, and cultured for 12<15 h in the PBS media with 1.7 mM calcium concentrations, respectively. Activation rate(60.0%) of the oocytes injected with 1 days old sperm extract was significantly higher than that (11.1%) injected with 6 days old sperm extract. The results obtained in this study suggest that non-heated human sperm extract may contain sperm-associated oocyte-activating factor such as oscillin.

  • PDF

Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization

  • Kang, Hee Jung;Lee, Sun-Hee;Park, Yong-Seog;Lim, Chun Kyu;Ko, Duck Sung;Yang, Kwang Moon;Park, Dong-Wook
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • Objective: Artificial oocyte activation (AOA) is an effective method to avoid total fertilization failure in human in vitro fertilization-embryo transfer (IVF-ET) cycles. AOA performed using a calcium ionophore can induce calcium oscillation in oocytes and initiate the fertilization process. We evaluated the usefulness of AOA with a calcium ionophore in cases of total fertilization failure in previous cycles and in cases of severe male factor infertility patients with non-motile spermatozoa after pentoxifylline (PF) treatment. Methods: The present study describes 29 intracytoplasmic sperm injection (ICSI)-AOA cycles involving male factor infertility at Cheil General Hospital from January 2006 to June 2013. Patients were divided into two groups (control, n=480; AOA, n=29) depending on whether or not AOA using a calcium ionophore (A23187) was performed after testicular sperm extraction-ICSI (TESE-ICSI). The AOA group was further split into subgroups according to sperm motility after PF treatment: i.e., motile sperm-injected (n=12) and non-motile sperm-injected (n=17) groups (total n=29 cycles). Results: The good embryo rate (52.3% vs. 66.9%), pregnancy rate (20.7% vs. 52.1%), and delivery rate (10.3% vs. 40.8%) were lower in the PF/AOA group than in the control group. When evaluating the effects of restoration of sperm motility after PF treatment on clinical outcomes there was no difference in fertilization rate (66.6% vs. 64.7% in non-motile and motile sperm, respectively), pregnancy rate (17.6% vs. 33.3%), or delivery rate (5.9% vs. 16.7%) between the two groups. Conclusion: We suggest that oocyte activation is a useful method to ensure fertilization in TESE-ICSI cycles regardless of restoration of sperm motility after PF treatment. AOA may be useful in selected patients who have a low fertilization rate or total fertilization failure.