• Title/Summary/Keyword: spent nuclear fuels

Search Result 197, Processing Time 0.03 seconds

A CONCEPTUAL STUDY OF PYROPROCESSING FOR RECOVERING ACTINIDES FROM SPENT OXIDE FUELS

  • Yoo, Jae-Hyung;Seo, Chung-Seok;Kim, Eung-Ho;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.581-592
    • /
    • 2008
  • In this study, a conceptual pyroprocess flowsheet has been devised by combining several dry-type unit processes; its applicability as an alternative fuel cycle technology was analyzed. A key point in the evaluation of its applicability to the fuel cycle was the recovery yield of fissile materials from spent fuels as well as the proliferation resistance of the process. The recovery yields of uranium and transuranic elements (TRU) were obtained from a material balance for every unit process composing the whole pyroprocess. The material balances for several elemental groups of interest such as uranium, TRU, rare earth, gaseous fission products, and heat generating elements were calculated on the basis of the knowledge base that is available from domestic and foreign experimental results or technical information presented in open literature. The calculated result of the material balance revealed that uranium and TRU could be recovered at 98.0% and 97.0%, respectively, from a typical PWR spent fuel. Furthermore, the anticipated TRU product was found to emit a non-negligible level of $\gamma$-ray and a significantly higher level of neutrons compared to that of a typical plutonium product obtained from the PUREX process. The results indicate that the product from this conceptual pyroprocessing should be handled in a shielded cell and that this will contribute favorably to retaining proliferation resistance.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Validation of UNIST Monte Carlo code MCS for criticality safety calculations with burnup credit through MOX criticality benchmark problems

  • Ta, Duy Long;Hong, Ser Gi;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.19-29
    • /
    • 2021
  • This paper presents the validation of the MCS code for critical safety analysis with burnup credit for the spent fuel casks. The validation process in this work considers five critical benchmark problem sets, which consist of total 80 critical experiments having MOX fuels from the International Criticality Safety Benchmark Evaluation Project (ICSBEP). The similarity analysis with the use of sensitivity and uncertainty tool TSUNAMI in SCALE was used to determine the applicable benchmark experiments corresponding to each spent fuel cask model and then the Upper Safety Limits (USLs) except for the isotopic validation were evaluated following the guidance from NUREG/CR-6698. The validation process in this work was also performed with the MCNP6 for comparison with the results using MCS calculations. The results of this work showed the consistence between MCS and MCNP6 for the MOX fueled criticality benchmarks, thus proving the reliability of the MCS calculations.

Concept of the Encapsulation Process and Equipment for the Spent Fuel Disposal (심지층 처분을 위한 사용후핵연료 포장공정 장비개념 설정)

  • Lee J.Y.;Choi H.J.;Cho D.K.;Kim S.K.;Choi J.W.;Hahn P.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.470-473
    • /
    • 2005
  • Spent nuclear fuels are regarded as a high level radioactive waste and they will be disposed in a deep geological repository. To maintain the safety of the repository for hundreds of thousands of years, the spent fuels are encapsulated in a disposal canister and the canister containing spent fuels should have the structural integrity and the corrosion resistance below the several hundreds meters from the ground surface. In this study, the concept of the spent fuel encapsulation process and the process equipment fur deep geological disposal were established. To do this, the design requirements, such as the functions and the spent fuel accumulations, were reviewed. Also, the design principles and the bases were established. Based on the requirements and the bases, the encapsulation process and the equipment from spent fuel receiving process to transferring canister into the underground repository including hot cell processes was established. The established concept of the spent fuel encapsulation process and the process equipment will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.

  • PDF

Determination of Tritium in Spent Pressurized Water Reactor (PWR) Fuels (가압 경수로 사용후핵연료 중 삼중수소 분석)

  • Lee, Chang Heon;Suh, Moo Yul;Choi, Kwang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.381-387
    • /
    • 2004
  • To characterize chemically a spent pressurized water reactor (PWR) fuel, an analytical method for trace amounts of tritium ($^3H$) in it has been established. Considering the effective management of radioactive wastes generated through the whole experimental process and the radiological safety for analysts, a separation condition under which $^{14}C$ and $^3H$ can be sequentially recovered from a single fuel sample was optimized using simulated spent PWR fuel dissolved solutions. $^{14}CO_2$ evolved during dissolution of the spent PWR fuels with nitric acid was trapped in an aliquot of 1.5 M NaOH. $^{129}I_2$ which was volatilized along with $^{14}CO_2$ was removed using a silver nitrate-impregnated silica gel absorbent. $^3H$ remaining in the fuel dissolved solution as $^3H_2O$ was selectively recovered by distillation. Its recovery yield was 97.9% with a relative standard deviation of 0.9% (n=3). $^3H$ in a spent PWR fuel with burnup value of 37,000 MWd/MtU was analyzed, reliability of this analytical method being evaluated by standard addition method.

Analysis for designing a device to transport radioactive contaminated materials in hotcell (핫셀의 방사성오염물질 운반장치 설계를 위한 분석)

  • 홍동희;진재현;정재후;김영환;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1021-1024
    • /
    • 2004
  • During demonstrations of a process conditioning spent nuclear fuels, it may be necessary to transport modularized parts of process equipment out of a hot cell because of modules' failure or completion of demonstrations. It may be not easy to transport modules because modules will be contaminated. For this purpose, we have developed a prototype of a device transporting radioactive contaminated materials. We have analyzed conditions of a hot cell and requirements of the device, designed and manufactured a scaled-down prototype of the device, and done some performance tests such as running on the rail, running on the flat floor, and carrying capability of a sliding upper part. From the tests, it has been shown that running on the rail and floor was smooth but the sliding part was deflected if the sliding distance was long. These result will be reflected to a design of the improved transporting device which will be used during demonstrations.

  • PDF

Fixed neutron absorbers for improved nuclear safety and better economics in nuclear fuel storage, transport and disposal

  • M. Lovecky;J. Zavorka;J. Jirickova;Z. Ondracek;R. Skoda
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2288-2297
    • /
    • 2023
  • Current designs of both large reactor units and small modular reactors utilize a nuclear fuel with increasing enrichment. This increasing demand for better nuclear fuel utilization is a challenge for nuclear fuel handling facilities. The operation with higher enriched fuels leads to reduced reserves to legislative and safety criticality limits of spent fuel transport, storage and final disposal facilities. Design changes in these facilities are restricted due to a boron content in steel and aluminum alloys that are limited by rolling, extrusion, welding and other manufacturing processes. One possible solution for spent fuel pools and casks is the burnup credit method that allows decreasing very high safety margins associated with the fresh fuel assumption in spent fuel facilities. This solution can be supplemented or replaced by an alternative solution based on placing the neutron absorber material directly into the fuel assembly, where its efficiency is higher than between fuel assemblies. A neutron absorber permanently fixed in guide tubes decreases system reactivity more efficiently than absorber sheets between the fuel assemblies. The paper summarizes possibilities of fixed neutron absorbers for various nuclear fuel and fuel handling facilities. Moreover, an absorber material was optimized to propose alternative options to boron. Multiple effective absorbers that do not require steel or aluminum alloy compatibility are discussed because fixed absorbers are placed inside zirconium or steel cladding.