• Title/Summary/Keyword: spent fuel

Search Result 1,179, Processing Time 0.023 seconds

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

Hot Corrosion Behavior of Al-Y Coated Haynes 263 in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 Al-Y 코팅한 Haynes 263의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is very corrosive fir typical structural materials. So, it is essential to choose the optimum material f3r the process equipment handling molten salt. In this study, the corrosion behavior of Al-Y coated Haynes 263 in a molten salt of $LiCl-Li_2O$ under oxidation atmosphere was investigated at $650^{\circ}C$ for $72\~168$ hours. The corrosion rate of Al-Y coated Haynes 263 was low while that of bare Haynes 263 was high in a molten salt of $LiCl-Li_2O$. Al-Y coated Haynes 263 improved the corrosion resistance better than bare Haynes 263 alloy. An Al oxide layer acts as a protective film which Prohibits Penetration of oxygen. Corrosion Products were formed $Li(Ni,Co)O_2$ and $LiTiO_2$ on bare Haynes 263, but $LiAlO_2,\;Li_5Fe_5O_8\;and\;LiTiO_2$ on Al-Y coated Haynes 263.

Simulations of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system

  • Yu, Jiankai;Lee, Hyunsuk;Kim, Hanjoo;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.661-673
    • /
    • 2020
  • The quarter-core simulation of BEAVRS Cycle 2 depletion benchmark has been conducted using the MCS/CTF coupling system. MCS/CTF is a cycle-wise Picard iteration based inner-coupling code system, which couples sub-channel T/H (thermal/hydraulic) code CTF as a T/H solver in Monte Carlo neutron transport code MCS. This coupling code system has been previously applied in the BEAVRS benchmark Cycle 1 full-core simulation. The Cycle 2 depletion has been performed with T/H feedback based on the spent fuel materials composition pre-generated by the Cycle 1 depletion simulation using refueling capability of MCS code. Meanwhile, the MCS internal one-dimension T/H solver (MCS/TH1D) has been also applied in the simulation as the reference. In this paper, an analysis of the detailed criticality boron concentration and the axially integrated assembly-wise detector signals will be presented and compared with measured data based on the real operating physical conditions. Moreover, the MCS/CTF simulated results for neutronics and T/H parameters will be also compared to MCS/TH1D to figure out their difference, which proves the practical application of MCS into the BEAVRS benchmark two-cycle depletion simulations.

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

Effects of Radiation Dose on Mechanical Properties of Resin-Type Neutron Shielding Materials (방사선 조사선량이 수지계 중성자 차폐재의 역학적 성질에 미치는 영향)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kim, Hwan-Young;Do, Jae-Bum;Ro, Seung-Gy
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.92-98
    • /
    • 1997
  • Effects of radiation dose on mechanical properties such as tensile strength, compressive strength, flexural strength, specific gravity and changes of weight and hydrogen content of epoxy resin-type neutron shielding materials to be used for spent fuel shipping casks have been investigated. At radiation dose up to 0.5MGy, the tensile strength, compressive strength and flexural strength of the shielding materials of KNS-115A, KNS-115B and KNS-115C have been increased with increase in the radiation dose. In contract, these mechanical properties have been decreased at radiation dose above 0.5MGy. The amount of radiation dose on the materials of KNS-115A, KNS-115B and KNS-115C has not resulted in a measurable loss of specific gravity and weight of them, whereas the reduction of hydrogen content has been observed.

  • PDF

Initiating Events Study of the First Extraction Cycle Process in a Model Reprocessing Plant

  • Wang, Renze;Zhang, Jiangang;Zhuang, Dajie;Feng, Zongyang
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.117-121
    • /
    • 2016
  • Background: Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Materials and Methods: Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. Results and Discussion: The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. Conclusion: The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

Recovery of Zirconium and Removal of Uranium from Alloy Waste by Chloride Volatilization Method

  • Sato, Nobuaki;Minami, Ryosuke;Fujino, Takeo;Matsuda, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.179-182
    • /
    • 2001
  • The chloride volatilization method for the recovery of zirconium and removal of uranium from zirconium containing metallic wastes formed in spent fuel reprocessing was studied using the simulated alloy waste, i.e. the mixture of Zr foil and UO$_2$/U$_3$O$_{8}$ powder. When the simulated waste was heated to react with chlorine gas at 350- l00$0^{\circ}C$, the zirconium metal changed to volatile ZrCl$_4$showing high volatility ratio (Vzr) of 99%. The amount of volatilized uranium increases at higher temperatures causing lowering of decontamination factor (DF) of uranium. This is thought to be caused by the chlorination of UO$_2$ with ZrCl$_4$vapor. The highest DF value of 12.5 was obtained when the reaction temperature was 35$0^{\circ}C$. Addition of 10 vol.% oxygen gas into chlorine gas was effective for suppressing the volatilization of uranium, while the volatilization ratio of zirconium was decreased to 68% with the addition of 20 vol.% oxygen. In the case of the mixture of Zr foil and U$_3$O$_{8}$, the V value of uranium showed minimum (44%) at 40$0^{\circ}C$ with chlorine gas giving the highest DF value 24.3. When the 10 vol.% oxygen was added to chlorine gas, the V value of zirconium decreased to 82% at $600^{\circ}C$, but almost all the uranium volatilized (Vu=99%), which may be caused by the formation of volatile uranium chlorides under oxidative atmosphere.ere.

  • PDF

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

Economic Effects of the Post-2020 Climate Change Mitigation Commitments: From the Generation Industry's Perspective (Post-2020 신기후체제의 발전부문 대응에 따른 경제적 파급효과 분석)

  • Yun, Taesik;Lee, Bongyong;Noh, Jaeyup
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.136-148
    • /
    • 2016
  • We analyze economic effects of GHG reduction measures of the generation industry to meet 2030 GHG reduction target using the scenario based approach. We estimate the GHG emission of the Korean power industry in 2030 based on both the $7^{th}$ Electricity Supply & Demand Plan and the GHG emission coefficients issued by IAEA. We set up three scenarios for reduction measures by replacing the coal fired plants with nuclear power, renewable energy and carbon capture and storage. Once and for all, the nuclear power scenario dominates the other energy technologies in terms of GHG reduction quantities and economic effects.

사용후핵연료 파이로공정 시설의 안전성 연구현황

  • Yu, Gil-Seong;Jo, Il-Je
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.253-253
    • /
    • 2009
  • 전세계적 고유가 및 $CO_2$ 배출로 인한 지구 온난화 문제 동 앞으로의 에너지 개발은 지속가능하며, 환경친화적이어야 한다. 따라서 가장 값싼 에너지원의 하나이며, 또한 환경문제에서도 유리한 원자력 에너지에 대한 세계적인 관심이 지난 약 30년 정도의 침체기간을 거친후 미국, 중국, 인도, 유럽, 아시아 등을 중심으로 다시 부활하고 있다. 그러나 미래 원자력에너지의 활발한 이용 및 지속 가능성을 위해서는 고준위 방사성 폐기물의 처리문제가 반드시 해결되어야 하며, 그 중에서도 사용후핵연료의 관리문제는 원자력 발전소의 계속 운전을 위해 시급히 해결되어야 한다. 한국원자력연구원도 2008년 12월 결정된 정부의 "미래 원자력시스템 개발 Action Plan" 을 통해 이러한 사용후핵연료의 관리문제를 해결하기 위한 연구 과제를 10여년 동안 수행해오고 있으며, 그 중 하나가 파이로(Pyroprocess) 공정개발이다. 1997년부터 관련연구가 착수되어, 2001년부터는 약 6년간에 걸쳐 파이로의 전처리 공정 및 전해환원 공정에 대한 실험실 규모 실증시설인 ACPF(Advanced spent fuel Conditioning Process Facility)를 개발한 바 있다. 또한 향후 파이로 기술의 상용화를 위해 2016년 까지 약 10톤/년 규모의 공학규모 파이로 실증시설(ESPF)을 건설하고 이를 기초로 2025년까지 100톤/년 규모의 파이로 상용시설 (KAPF) 을 건설하여 여기서 나온 우라늄 및 TRU 물질을 이용해 2030년까지 개발 예정인 소듐냉각 고속로에 필요한 핵연료를 제작, 공급하는 계획을 가지고 있다. 이 논문에서는 파이로 시설개발의 가장 중요한 인자중 하나인 시설의 안전성 확보를 위해 외국 및 국내에서의 연구개발 현황을 알아보고 안전성 분석 및 평가방법에 대한 기본 인자들을 도출해 보았다. 또한 파이로 시설의 인허가를 위한 사용후핵연료 처리시설 규제관련 국, 내외의 연구현황도 알아보았다.

  • PDF