Speedup is often used to show scalability, but its classical definition fails to explain some real measurements such as superlinear speedup. This leads to scaled speedup which scales other system parameters as number of rocessors changes. In this paper, scaled speedup and architectural speedup are introduced and superlinear speedup is explained with its cause.
CRAY 에서 멀티/마이크로 태스킹은 다수의 CPU를 이용하여 계산속도를 증가시키는 하나의 방법이다. CRAY-2 에는 4개의 CPU 가 있으므로 적절히 설계된 알고리즘을 가지고 최대 4배의 speedup을 실현할 수 있다. 저자는 이 논문에서 CRAY-2에서 멀티태스킹/마이트로태스킹 라이브러리를 이용한 2가지의 선형시스템의 해의 병렬화를 제시한다. 하나는 조밀행렬에 대한 가우스 소거법이고 다른 하나는 Radicati di Brozolo가 제안한 준비행렬을 이용한 대형이산 행렬의 반복적 해법이다. 첫째 경우에 크기가 600인 행렬에서 2개의 CPU에 멀티태스킹을 이용하여 1.3의 speedup을 얻었으며 두 번째 경우에서는 크기가 8192인 행렬에서 4개의 CPU에 마이크로 태스킹을 사용하여 3이상의 speedup을 얻었다. 첫째 경우에서는 비균일한 벡터길이 때문에 speedup 이 제한되었다. 두 번째 경우에서는 Radicati 의 테크닉을 혼합한 ILU(0) 준비행렬은 4개의 프로세서에서 상당히 높은 speedup을 얻었다.
In reinforcement teaming, Q-learning converges quite slowly to a good policy. Its because searching for the goal state takes very long time in a large stochastic domain. So I propose the speedup method using the Q-value initialization for model-free reinforcement learning. In the speedup method, it learns a naive model of a domain and makes boundaries around the goal state. By using these boundaries, it assigns the initial Q-values to the state-action pairs and does Q-learning with the initial Q-values. The initial Q-values guide the agent to the goal state in the early states of learning, so that Q-teaming updates Q-values efficiently. Therefore it saves exploration time to search for the goal state and has better performance than Q-learning. 1 present Speedup Q-learning algorithm to implement the speedup method. This algorithm is evaluated. in a grid-world domain and compared to Q-teaming.
The sorting algorithms have been developed to take advantage of distributed computers. But the speedup of parallel sorting algorithms decrease rapidly with increased number of processors due to parallel processing overhead such as context switching time and inter-processor communication cost. In this paper, we propose a parallel sorting method which provides linear speedup of an optimal serial algorithm for a system with a large number of processors. This algorithm may even provide superlinear speedup for a practical system. The algorithm takes advantage of an interconnection network properties and its protocol.
Aspects of modelling, performance monitoring, control and optimisation are discussed, with particular reference to the application of SPEEDUP. A new facility is described which allows SPEEDUP to operate in conjunction with other systems and several examples are briefly given of its power and flexibility. In particular, its use in on-line applications alongside plant management and distributed control systems is described and how it can be used in scheduling/sequencing problems in investigating batch and cyclic problems.
본 논문은 크기가 n와 k인 nheap과 kheap을 병합시키기 위한 병렬 알고리즘을 제 시함과 동시에 그들을 MasPar상에 실제로 구현하고자 하는데 그 주된 목적이 있다. 이때, EREW-PRAM(Exclusive-Read Exclusive-Write Parallel Random Acess Machin)상에 서 max(2$^{-1}$, $\ulcorner$(m+1)/4$\lrcorner$개의 프로세서를 이용해서 본 논문에 제시된 알고리즘 의 시간 복잡도가 O(log(n/k)*log(n))임을 제시하였다. 여기서 i는 heap의 height를 뜻하며, m은 크기 n과 k의 합으로 구성된 것이다. 또한 이것을 MasPar 컴퓨터에 적용 을 시켰을 때, 테이타의 양이 8백만개이고, 64개의 프로세서를 이용한 경우의 speedup 을 33.934를 얻었다. 이때 적용된 데이타의 형태는 불완전 힙상에서 크기가 k〈n를 지 니는 경우의 처리이다. 그리고 이같이 제시된 알고리즘의 EPU(Effective Processor Utilization)을 계산하면 1인 최적의 speedup율을 나타냄을 알 수가 있다.
본 논문은 SIMD 병렬 처리 컴퓨터에 적합한 병렬 분류 알고리즘을 제시키 위해서, 다음과 같이 수행이 된다. 첫째, 비순서화된 데이타 집합을 p개의 프로세서로 할당시킨후에 순차적 quicksort로 분류한다. 그 다음으로, 분류된 각 프로세서의 중위수값을 구한다음 이 값에 위해서 각 프로세서에 데이타 값을 할당시킨다. 각 프로세서에 할당된 데이타가 정확하게 분배가 되도록 중위수와 중위수 값을 구해서 각 프로세서에 적합한 데이타를 다시 할당 시키게 된다. 이때 각 프로세서가 지닌 데이타의 수는 확률이론을 이 용하였다. 마지막으로, 각 프로세서에 할당된 데이타를 순차적 quicksort로 분류하면 된다. 여기서 분류될 데이타 n가 $n{\geq}p^2$일때 본 알고리즘은 최적이 되게됨을 볼수가 있다. 실제적 구현에 있어서, 64개 프로세서를 이용해서 8백만개의 데이타를 분류할때 PSRS 방법의 speedup은 44.4인 반면에 본 알고리즘은 48.43이 된다. 즉, 다양한 공용과 분산 기억장치 기계에 관해서, 본 알고리즘의 speedup은 거의 절반 이상의 선형시간으로서 성취가 됨을 볼 수가 있다.
Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.
분산병렬처리의 목적은 다양한 내재 병렬 형태의 특징을 갖는 연산 집약적 문제를 고속 네트웍으로 연결되어진 다수의 고성능 및 병렬 컴퓨터들의 각기 다른 능력을 최대한 이용하여 해결함에 있다. 본 논문에서는 분산병렬시스템을 이용하는 경우의 성능 향상 분석을 위해 일반적인 그래프 표현 방법을 포함하는 계산 모델을 제안하고 프로그램의 수행을 위한 스케쥴링 시에 성능 향상이 어떠한 요인에 의해 달성되는지를 분석한다. 제안된 표현 방법은 동기종 및 이기종 시스템 모두에 적용되어질 수 있다. 분산병렬 시스템에서 스케줄링을 통하여 더 많은 속도향상을 얻기 위해서는 태스크와 병렬 컴퓨터간의 병렬특성의 일치가 주의 질게 다루어져야 하며 태스크의 이동으로 인한 통신 오버 헤드가 최소화 되어야 한다.
In the protein database search, 3D structural shape comparison for protein screening plays a important role. Protein databases have big size and have been grown rapidly. Exhaustive search methods cannot provide a satisfactory performance. As protein is composed of a set of spheres, the similarity calculation of two set of spheres is very expensive. Thus, a reasonable filtering method could be an answer for the speedup of protein screening. In this paper, we suggest a speedup method for protein screening with atom number and bounding sphere. We also show some experimental results for the validity of our method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.