CRAY-20IAl HE|/DIOIZE EHAZ] 2t0IEE{21E OB S MEAA- Q| WadsHy 2711

CRAY-2¢1 4] dE]/ulo]az)27 o] B &
o]-§-3t A |2l 2] WHAY

of &

2 o

CRAY A HE]/vlo]A2 B2 L the CPUE oj&39 AMETE 77 shte] yolh
CRAY-2 & 4718 CPU 7} Q1o Eg AA3) AAY ¢2a&E 7IAZ o 44 9] speedupg HAEE 4 AU
. AAe o] oA CRAY-2014 HE|gj 27 /vlojaz el 27 olEeje]§ o] § & 27kA 9] M2
39 BYIE AA G shie =Yg ol @ 7H-2 2 ol5 ¥E dhvhE Radicati di BrozoloZ} A<t
& FulgE G o] -4% tigolat Yo wtE A Fgelt). A Aol A7I7E 6002 FBoA 2749 CPUS B
Ee 27 & o] 43 1.39] speedup & YA F WA oA 2771 81922 A FefA 4782 CPUY v}
olaz g7 & AH-5te] 30|49 speedup VAT RAA A M e v F LT HEj o] BfE speedup ©]
AGHAT F 1A Sl E Radicati] HAY-& EFF ILUQO) SHFEL 49 Z2 MM A 4T3
£2 speedupg AU

Parallel solution of linear systems on the CRAY-2
using multi/micro tasking library

Sang Back Ma'

ABSTRACT

Multitasking and microtasking on the CRAY machine provides still another way to improve computational
power. Since CRAY-2 has 4 processors we can achieve speedup up to 4 with properly designed algorithms. In
this paper we present two parallelizations of linear system solution on the CRAY-2 with multitasking and
microtasking library. One is the LU decomposition on the dense matrices and the other is the iterative solution
of large sparse linear systems with the preconditioner proposed by Radicati di Brozolo. In the first case we
realized a speedup of 1.3 with 2 processors for a matrix of dimension 600 with the multitasking and in the sec-
ond case a speedup of around 3 with 4 processors for a matrix of dimension 8192 with the microtasking. In the
first case the speedup is limited because of the nonuniform vector lengths. In the second case the ILU(0)
preconditioner with Radicati’s technique seem to realize a reasonably high speedup with 4 processors.

t A 8 4:3Fdse FAUY ARALN G
EEH45:19979 149 7Y, HAMSE 19979 99 249

2712 nFENIED =X M43 W 1155(97.11)

1. Introduction

In this paper we address the problem of the
vectorizing and parallelizing the solution of the dense
and sparse linear systems on a CRAY-2. The sparse
linear systems arise in the discretization of the partial
differential equations, and due to their special structure
they need special attentions, otherwise the cost of the
sparse linear systems with the LU-type methods
becomes so prohibitive. Iterative methods offer good
alternatives since they require minimal memory and
are inherently amenable to parallel execution. For the
dense linear systems we use the classical LU deco-
mposition algorithm and we parallelized on the 2
processors. For sparse linear systems we combined
the vectorizing on a processor and parallelizing on 4
Processors.

The CRAY-2 is a four-processor machine. Each
processor can execute independent tasks concurrently.
All processors have equal access to the large central
memory. The CRAY-2 at Minnesota Supercomputer
Center has 512 Megawords of central memory. Each
CRAY-2 processor has 8 vector registers(each 64
words long) and has data access through a single path
between its vector registers and main memory. Each
processor has 16 K words of local memory with no
direct path to central memory but with a separate
data path between local memory and its vector
registers. Also there are six parallel pipelines:com-
mon memory to vector register, load/store vector
register to local memory, load/store floating addition/
subtraction, floating multiplication/division, integer
addition/subtraction and logical pipelines. The central
memory is divided into four quadrants, and assign-
ment of four quadrants to four processors takes place
and changes at each memory cycle. Hence if more
than one processor request an access to the same
quadrant, then a memory conflict will happen.

The CRAY-2 offers the microtasking and multitasking
for the parallel execution involving more than one

processors. Microtasking is suitable for parallel

execution of tasks with small granular size, especially
the inner do-loop, and multitasking for the tasks with
large grain size. Microtasking has less overhead,

hence more efficient than the multitasking.

2. LU factorization with partial pivoting

2.1. Algorithm
The algorithm can be described as having basically

three distinct parts within a loop. Let n be the dimen-

sion of the general square matrix, A=LU.

doj=1,n
Perform the j-th matrix vector product(forms part
of L).
Search for a pivot and exchange
Perform the j-th vector matrix product(forms part
of U)

end

For parallel execution, first let the matrix A look like
as follows.[4], [5]

X' Xi# M2
N

M, T

(Fig. 1) Parallel execution of LU

Then, LU factorization needs

Doj=1,n

1)Search for a pivot and interchange

CRAY-20IA] HE|/OI0|1AZ EfAZ 2tO|E24E|E 0|83 MBAIA-C HEY 2713

2}y, =y +M; X;:j—th matrix-vector product
3)¥3=y; +X; M,:j—th vector-matrix product

Let us denote the step 2) of above by C; and 3) by R;.
For the sake of simplicity we assume that no pivoting
is necessary. Then we could rearrange the above

operations as follows.

G
DO j=1, N—1
R,
Cjn
End
R,

In other words we want to take advantage of the fact
that R; and C;4, can be executed concurrently.
Except for A(j, j +1) in Rj, which is computed in R;
and subsequently needed in C;.,, the remaining
entries of ¥, and yz are independent of each other for
parallel processing. In CRAY-2 this is suitable for the
multitasking. So for the A(, j+1), we need to
synchronize between two tasks by event-related subro-
utines, such as Evwait, Evpost, Evclear, and Evasgn

in the multitasking library.

2.2. Synchronization

1. We assign C,, Cs,...,,Cy_; to task 2 and the re-
maining to task 1.

2. Before calling LU subroutine, task 2 is created

and waiting for the execution.

W

. At the beginning of each iteration, R; is started
first, and as A(, j +1), it calls the C; 4, to start
execution.

4. At the end of each execution, R; is finished and

wait for C; 4, to finish.

5. After N —1 iterations, Ry is executed and LU de-

composition is achieved.

2.3. Experiments
(Table 1) shows the execution time in seconds

using 1 and 2 processors. T1 and T2 denote the CPU
time spent with 1 and 2 processors, respectively. For
the N tested the speedups stay around 1.3, with the
efficiency Ep = 65%. The lengths N seem to not affect
the speedups much. The test runs were not made in
exclusive mode and the CPU time was taken to be the
minimum of several runs, so the exact speedup could
be higher than reported here. Even so, the speedup
cannot be said to be satisfactory. The main reason
could be that as j increases in the LU decomposition
loop the vector length becomes smaller relative to the
vector size 64 of CRAY-2. Actually, the vector length
in M, %, or xT M; is n—j. This might be the factor
limiting the speedup for this algorithm. This kind of
low speedup is somewhat expected in LU decompo-
sition routines, since they are inherently serial. In the

iterative methods we might see an improvement.

(Table 1) Timing of multitasked algorithm(T2) vs regular
one(T1) in seconds.

Matrix size Tl T2 Ti/T2
100 0.0575 0.0416 1.38
300 0.988 0.779 1.23
400 2.21 1.70 1.3
500 4.14 3.7 1.27
600 6.95 5.34 1.3

3. Preconditioned iterative method

3.1 Introduction

The two most common ways to approximate the
solution of partial differential equations by discre-
tization of the original problems are FDM(Finite Dif-
ference Method) and FEM(Finite Element Method).
They both lead to sparse banded matrices. For many
applications, a matrix dimension N greater than
10,000 is not uncommon. For this kind of problems a
direct method, such as, Gaussian elimination cannot
be used because of its prohibitive cost. The use of

iterative methods allows a solution at the reasonable

2714 SXFEMeIED =FX] M4 W 112(97.11)

cost. For the symmetric matrices, the Conjugate
Gradient Method with proper preconditioning can be
successfully used. For nonsymmetric matrices, the
Conjugate Gradient Method does not apply. This dif-
ficulty can be overcome in several ways. We can solve
Ax=f by solving the normal equations: 47 4 x=AT
f. However, the matrix A7 A generally squares the
condition number of the matrix A, which could lead
to slower convergence. Vinsome[l7] proposed an
algorithm, Orthomin[k], which requires minimum
storage and achieves the convergence for matrices
with the positive real part of the eigenvalue. The opti-
mal k depends on the nonsymmetry of the problem.
For symmetric problems k=1 yields the Conjugate
Residual method.

The Conjugate Gradient Squared method (CGS)
[14] was derived from the Biconjugate Gradients
(BI-CG){9] method by simply squaring the residual
and direction matrix polynomials. CGS does not need
multiplication by the transpose of a matrix. The re-
sidnal and the directions in CGS are not bi-
orthogonal or bi-conjugate respectively. However it
can be viewed as the result of polynomial pre-
conditioning with the polynomial varying from iter-
ation to iteration. Thus it turns out that CGS is in
practice faster than BI-CG. CGS computes exactly
the same parameters as BI-CG and so it has exactly
the same breakdown conditions as BI-CG. In fact
along the iteration of CGS one can superimpose a
BI-CG iteration with additional cost of one matrix
vector multiplication but without the need for multi-
plication by the transpose.

For an iterative method, preconditioning the given
linear system reduces the number of iterations sub-
stantially. We used Incomplete LU factorization(ILU
ON(2], [10], [12]) in this paper. However ILU-
factorization has to solve Ly=z, Ux=y, which is a
serial recurrence. For a vector machine, this causes
serious slowdown. In this paper we adopted the von
Neumann series approach by van der Vorst([15]).

Also, the above-mentioned recurrences become a

bottleneck in parallel execution. Radicati di Brozolo
(I1]) proposed a technique to handle this problem,
and achieved a high speedup on IBM 3090 with six
processors. Our results on CRAY-2 with four pro-
cessors on CRAY-2 also seem to confirm this.

3.2 A Modet Problem
Let us consider the second order elliptic PDE prob-
lem in two dimensions in a rectangular domain Q in

R? with homogeneous boundary conditions:
—(aw), —(buy), +(cw), +(du), +fu=g,

where u=0 on 42 and a(x, y), b(x, y), c(x, y), d(x, y)
and g(x, y) are sufficiently smooth functions defined
onQ2anda, b>0,¢,d, f>00nQ.

Discretization of the above equation by FDM or
FEM leads to a linear system of equations, where the
matrix is sparse. Let 2 be (0, 1) x (0, 1), with n grid
points and h=1/(n +1) as the mesh size both in x
and y directions, and the unknowns be ordered in the
natural ordering. For the finite difference solution we

used central difference for the first order terms and

“ the five-point difference for the second order terms.

Hence the whole discretization has a truncation error
of O(h?), where h is mesh size. This leads to a
Block-Tridiagonal matrix with five diagonals. The
FDM discretization gives a linear system of equations:

Ax=f

of order N=#2 If c(x, y) or d(x, y) is nonzero, then
resulting matrix A is a nonsymmetric, block tridiagonal
matrix. On the other hand, let L(u) be the partial dif-
ferential operator. The finite element method seeks an

approximate solution of the form

M=

B=2 et

k

are the basis functions. If we use Lagrangian basis

functions with square clements, then the resulting

CRAY-20IIM HE(/0I0|Z 2 EfAZ 2t0|EE{2IE 0IBS MEAILR | HABHY 2715

matrix is also Block-Tridiagonal(See [11]). In this case
the matrix has nine-diagonals, rather than five for
FDM,

3.3 iterative methods

We next describe two CG-like iterative methods to
solve Ax =f, where A is a nonsymmetric matrix of or-
der N. They are the Orthomin(k) which works for the
symmetric part of A being positive definite, and the
Conjugate Gradient Squared([12]), which converges
for general matrices provided that the iteration does
not break down. Here, we used right preconditioning,
because in this form we can compute the same re-

sidual as in the non-preconditioned case.

3.3.1 Orthomin(k)

The Generalized Conjugate Residual method(GCR)
[7] is a direct generalization of CR for symmetric and
positive definite linear systems. In the absence of
round-off error, GCR gives the exact solution in at
most N iterations. The main difference between GCR
for nonsymmetric matrix and CR for a symmetric
matrix is that in i-th iteration of GCR, we have to
keep in storage all of previous i-1 direction vectors,
and compute p; based on A7 A orthogonality of ;
and p;, j<i. Thus, as i gets larger, the cost and
storage become prohibitive. The GCR method converges
for A nonsymmetric with symmetric part positive
definite. Vinsome([17]) proposed the Orthomin(k), as
a practical version of the Generalized Conjugate Re-
sidual, with storage requirement for k directional
vectors. Here, P, is the right preconditioner. We used
right preconditioning, since it minimizes the residual
norm rather than minimizing the norm of P, 7;

where 7; is the i-th residual vector.

Algorithm : Orthomin(k)

1. Choose x,.

2. Compute 7= f — Axp.

3. po=74.

For i=0 step 1 Until Convergence Do

4. a;=(r;, Ap)/(Ap;, Ap)).
S5.xi 4 =x; ta; pi

6. rivi=ri—a; A b;

7. Compute 4 P, 7; 4,

8. piri=P, 7y +.Z' b/’fp,-. where
1=17;

; (AP,?’,’+\,AP') . .
9 ptem 22D T F) .
i Apnap) 715°

i
IO.AP,‘.H:A P,-H +Zb; A Pi‘
1=3;

Endfor
In this algorithm J; =max(0, i —k +1).

3.3.2 CGS

BI-CG was proposed to solve indefinite linear system,
by Fletcher([9]). CGS results from the squaring of the
BI-CG matrix polynomials for 7, CGS breaks down
whenever BI-CG does. In the absence of break down
the CGS method converges in less than N/2 iterations.
In the following P, is the right preconditining operator.

Algorithm CGS
1. 7’0=f-A X, P, 70, A 7p.

2. qy=p-1=0.

3.p.,=10

For i=0 step 1 Until Convergence Do
4. pi=77, bf=7;'_p_'_l

5.u;=7; +b; q;

6. py=u; +b;(q; +b; pi-)

T.v;,=A4 P, p;.

8. a,-=;’;T v;.

9. a,-=——£f—

10. gi 4 =wi~a; v;
11. %; ¢ =x; +a; P,(u; +q;)
12. Vi1 =%i—a; A Pr(ux' +qi+l)

Endfor

3.4 Preconditioning

2716 StnFEM2IED] =FX| M43 M 1135(97.11)

For the preconditioning matrix P,, we look for

matrices such that
P, A~]

or P, A has the clustered eigenvalues, and the linear
system P, x=y is easy to solve. One natural choice is
the Incomplete LU factorization([7], [10], {12]), where
A=LU +E, where L, ;=U; ;=0, if A ;=0, and E, ;
=0 if A; ;#0. In other words, L and U have the
same sparsity patterns as A.

Let NZ(A) denote the set of pairs of [i, j] for which
the entries 4; ; of the matrix A are nonzero, the

nonzero pattern of A.

Algorithm : The Incomplete LU Factorization.
Fori=1 step 1 Until N Do

For j=1 step 1 Until N Do

If((i, j) belongs to NZ(A)) Then

min(i, /)—1

8ij=4di;j— E] Ly Uy

If(l -3 _|) Then Lij =8

Sy
WG<) Uy=+-
Endif
Endfor
Endfor

Here, we set U;=1, for 1 <i< N. Then, the finite

difference matrix, is generated as follows.

Fori=1 step 1 Until N Do
Li;1=4; i,

Li,i:Aii'—Ai,i—l Liji-1=UiniLi iy
Uit
Up i =20
£
Endfor

For the finite element case, the ILU(0) preconditioner

matrix is generated as follows.

ForI=1step 1 Until N do

Liicw=A;i-nn
Liin=Aii-nx—Lii-nt Licu_i icn
Liicne1=Liiop1—Lijon Licy i-n 41
Liio=diioi—Liicyr1 Uppeyicy = Lijion Ujom ic
Li=A5—Uji-y iLijio1—Uiip—1,i Li i-ney

“Uiemi Liimn=Uiont1,i Lijion41

Aiis1=Lijicq Uiew it ~Uien 11,i 41 Li jope 41

Uiiti= I
1
_ Aiiini—Li i1 Uisitn
Uiitn-1= T
113
v A Lii- Uiy i 4n
iitn
’ L;
_ Aiits+
Vitn 1 =7

L;

4. Experiments

4.1 Vectorization

Implementation on a vector computer requires
proper vectorization of the computations to take
advantage of the full single processor capacity.
Vectorization for these methods is relatively strai-
ghtforward. The matrix is stored in diagonals, so that
Matrix-Vector multiplication is fully vectorized. Also
the inner products and linear combinations are vector
operations. The only computation which needs further
attention is that of the preconditioning step,

LUx=y

which consists of solving the two triangular systems,
L z=y and U x=y, where L and U are the incom-
plete LU factors ,consisting of five (nine in FEM)
diagonals. Solution of these systems requires back-
solving, which is a serial operation. We can solve this
problem by using a von Neumann series expansion,
proposed by van der Vorst([15]), or by using the
block preconditioning approach by G. Meurant([13)).

CRAY-20ilAl ZHEI/OIOIRZ ENAZ 210(22{2|8 0188 MAUAILHO| ©YshY 2717

In this paper we adopted the first method. Assume
the given matrix A is block-tridiagonal. Then, we can
write A =L U +err. Assume further that the diagonal
entries of L and U are 1, by scaling of the original
problem. Then we can write L=1 +E +F, where E is
the matrix consisting of sub-diagonal L; ;_,, F is the
matrix consisting of the rest subdiagonals L;;, 7 <i—1.
Solving

U+E+Pz=y
amounts to
T+E)z=9—F2-,

Assuming E is small relative to I in norm, we expand

in von Neumann series,
zi=(I+E)" (;—Fz_)
=(I-E+E-E*+.) (3 —Fz_).

and we truncate the power series at the m-th term. In
{15] m=2 was chosen. We also chose m=2. The
assumption about the norm of E relative to I is satis-
fied if the matrix is diagonally dominant. Most of the
problems in elliptic PDE satisfy this assumption, or
can be made so by increasing the number of meshes.
The backward solution for U is computed similarly.
This scheme vectorizes the computation, with vector
length =n, where n is the number of grid points in the
x-direction using the natural ordering.

4.2 Parallelization

In the codes of Orthomin, CGS, and CRS with/
without preconditioning, the iteration loop cannot be
executed in parallel, since the residual vectors and the
directional vectors need the previous ones to be
updated. Note that in these codes, most of the
wxecution time is spent in the computational kernels,
such as, the Matrix-Vector Product, the Dot product,

the SAXPY, or the double SAXPY. So we could
realize reasonable speedup from parallelization of
these kernels. For the preconditioning block, the re-
currence in (4.1) poses difficulties to the paralle-
lization. We adopted the technique by Radicati di
Brozolo[1]. It solves the preconditioned matrix system
by dividing into four submatrices, ignoring the orig-
inal relation between those submatrices. However we
can make up for this loss of connection, by
introducing an overlapping region between consecu-
tive submatrices. Then we take the average of the
computed values by the subsystem in the overlapped
regions. According to {1}, this overlapping strategy
gives better performance than the non-overlapping

one.

]
Block 1

]

Block 2

Block 3

Block 4

(Fig. 2) Parallel execution of ILU matrix-vector product
with overlapping

4.3 Test Problem

Problem. [14] Convection-Diffusion equation

—e(ttyy +ty,) Foyu, +0,4,=0,Q =(0,1) x(0,
v, =2y(1—x2), v,=2x(1 —»?),

0 x=—1
0, x=1

u=)0, y=1
lattanh(IO(Zx +1)), y=0, ~1<x<9

y=0,0<x<1

— =0,

on

2718 stZEHEMIRS =2 X M43 M 115(97.11)

4.4 Resuits

We ran experiments with Nx =64, 128, 256, and
Ny = Nx/2, where Nx is the number of nodes in X-
direction, and Ny in Y-direction. We set £=0.01. For
both FDM and for FEM we used the vectorizable
von Neumann series ILU(0) Preconditioning. For
Radicati’s technique, we let the two consecutive
submatrices overlap in region of two Nx nodes. For
both FDM and FEM, we used natural ordering. We
used the microtasking library for the parallelization of
the inner do-loops. (Table 2) shows the speedups
with 4 processors for various Nx and Ny, iterative
methods and FDM and FEM. Orth(4) and CGS
denote the iterative methods without the preco-
nditioning. Orth(4)-ILU(0) and CGS-ILU(0) denote
the Oth(4) and CGS methods with ILU(0) preco-
nditioning with Radicati’s technique. As in the LU
case the test runs were not done in exclusive mode
but taken to be the minimum of several runs. The
real speedup will be higher than that reported here.
As we see in the 3rd and 4th rows Radicati’s tech-
nique seem to realize a reasonable speedup of 2.5-3.0
on the average, which makes the technique quite use-
ful in the case of moderate number of processors. In
the case of Orth(4) and CGS without precondi-
tioning we see an appreciable increase in the speedup
as we increase Nx and Ny both in FDM and FEM.
This confirms that even though the Radicati di
Brozolo preconditioning might be efficient the algor-
ithm parallelizes better without the preconditioning
part. With the preconditioning increase of Nx and Nx

does not necessarily imply corresponding increase in
the speedup. Also, any of the two iterative methods
seem to not outperform the other method for all Nx
and Ny. One noticeable experiment is the speedup of
3.66 for CGS-ILU(0) for Nx =128, Ny =64. It is even
higher than that of CGS without the preconditioning.
The reason could be that by using Radicati’s tech-
nique we are actually employing some algorithm dif-
ferent from that without the preconditioning. It is
reported by [1] that the technique sometimes produces
unusually fast iteration. One final thing to note is
that in every cases FDM produces higher speedup
than the FEM for same Nx and Ny.

5. Conclusion

We have parallelized 2 linear algebra problems with
multiple processors of CRAY-2. In the first case of
LU decomposition we have achieved speedup of 1.3
with 2 processors on a matrix of dimension 200. For
the second case of preconditioned iterative methods
we were able to obtain a speedup of 2.5-3.2 with 4
processors. In the first case we used multitasking and
microtasking in the second case. Microtasking is ef-
ficient since it parallelizes the inner DO loops and
hence has minimum overhead and minimum load bal-
ancing problem. For a parallel execution of general
tasks multitasking needs to be adopted, which has
more overhead and load balancing problem. The par-
allel execution of LU decomposition algorithm for

general dense matrices with 2 processors produces a

{Table 2) Speedup with 4 processors with error tolerance = 0.01

Finite Difference Finite Element
64 x 32 128 x 64 256 x 128 64 x 32 128 x 64 256 x 128
Orth(4) 2.29 3.01 3.15 3.14 3.15 3.05
CGS 2.11 3.19 3.26 2.10 3.19 3.05
Orth(4)-ILU(0) 3.05 3.17 2.57 2.30 3.05 2.54
CGS-ILU(0) 2.47 3.66 2.85 3.09 2.41 271

CRAY-20ilA] HE|/OIOIAE EfA Y 2H0IEe{2| 8 0|88 MEAIAH o] WY 2719

speedup of poor 1.3 regardless of the matrix size. We
believe that this is due to the ununiform vector
lengths. The Radicati’s technique seem to realize a
reasonable speedup with 4 processors. Since it is very
easy to implement it could be a useful technique
combined with ILU(0) for moderate number of the
processors. In our experiments the iterative methods
parallelizes better than the LU decomposition methods.
Also, it is to be noted that since the CRAY-2 has a
shared memory, memory contention might cause the

limitations on the maximum speedup possible.
References

[1] G. Radicati di Brozolo and Y. Robert, “Parallel
and Vector Conjugate Gradient-like Algorithms
for Sparse Nonsymmetric Systems”, IBM ECSEC,
Italy, 1988.

[2]. J. Cosgrove, J. Diaz, and A. Griewank, “Ap-
proximate inverse preconditionings for sparse lin-
ear systems”, Intern. J. Computer Math., Vol. 44,
1992, pp. 91-110.

[3]. 1. J. Dongarra and S. C. Eisenstat, “Squeezing
the most out of an algorithm in CRAY Fortran”,
ACM Transactions on Mathematical Software,
Vol. 10, No. 3, September 1984, pp. 219-230.

[4]. J. J. Dongarra and C. C. Hsiung, “Multi-
processing linear algebra algorithms on the
CRAY X-MP-2:Experiences with small granu-
larity”, Journal of Parallel and Distributed Com-
puting, Vol. 1, No. 1, Aug. 1984.

[51. J. J. Dongarra and D. C. Sorensen, “Linear
Algebra on High Performance Computers”, Par-
allel Computing 85, 1986, pp. 3-32.

[6). S. Eisenstat, H. Elman, and M. Schultz,
“Variational Iterative Methods for Nonsymmetric
Systems of Linear Equations”, SIAM J. Numer
Anal, Vol. 20, 1983, pp. 345-357.

[7]. H. Elman, “Iterative Methods for Large,Sparse,
Nonsymmetric Systems of \Linear Equations”,
Ph. D Thesis, Department of Computer Science,

Yale, Univ., 1982,

[8]. S. Filippone and G. Radicati di Brozolo,
“Vectorized ILU Preconditioners for General
Sparsity Patterns”, IBM ECSEC, Italy, 1988.

[9]. R. Fletcher, “Conjugate Gradient Methods for
Indefinite Systems”, Lecture Notes in Mathemat-
ics 506, Springer-Verlag, 1976.

[10]. L. Kolotilina and A. Yeremin, “Factorized
sparse approximate inverse preconditionings”,
SIAM. J. Matrix And Appl, Vol. 14, No. 1,
1993, pp. 43-58.

[11]. L. Lapidus and G. Pinder, Numerical Solution
of Partial Differential Equations in Engineering
and science, John Wiley & Sons, 1981. !

[12]. J. Meijerink and H. Van Der Vorst, “An [terat-
ive Solution Method for Linear Systems of
Which the Coefficient Matrix is a Symmetric
M-Matrix”, Math. Comp. 31, pp. 148-162, 1977.

[13]. G. Meurant, “The Block Preconditioned Conju-
gate Gradient Method on Vector Computers”,
BIT Vol. 24, 1984, pp. 623-633.

[14]. P. Sonneveld, “CGS, a Fast Lanczos-Type
Solver for Nonsymmétric Systems”, SIAM Sci.
Stat Comp, Vol. 10, 1989, pp. 36-52.

[15]. H. Van Der Vorst, “A Vectorizable Variant of
Some ICCG Methods”, SIAM Sci. Stat Comp,
Vol. 3, 1982, pp. 350-356.

[16]. H. Van Der Vorst, “High Performance Preco-
nditioning”, SIAM J. Sci. Stat Computing, 10(6),
1989, pp. 1174-1185.

{17]. P. Vinsome, “An Iterative Method for Solving
Sparse Sets of Simultaneous Linear Equations”,
Society of Petroleum Engineers of AIME,paper
SPE 5729, 1976.

[18]. “An Overview of CRAY-2 Microtasking”,
MSCTBI115, Minnesota Supercomputer Center,
1988 July.

2720 SIRAEME(EF =FX| M4 X 115(97.11)

of A 4
19743~19780 M-S A
A3t AAHEA T
19783 ~1983d 38| 7
Adrgd
1983 3~1987'd m= vl ieEl
Fyu g £t At
1987d~1993 8¢ 1= uly
A8t FY) & A=A 48 vt
1994 39~1997d 294 Agdistm Fedig Az
Aaretst AYG73A
19979 39~3A S w Faoys A ALE

& xRy

