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Abstract

This paper presents a parallel sorting algorithm suitable for the SIMD multiprocessotr, The algorithm finds pivots
for partitioning the data into ordered subsets. The data can be evenly distributed to be sorted since it uses the prob
ability theory. For n data elements to be sorted on p processors, when n 2 p? the algorithm is shown to be
asymptotically optimal. In practice, sorting 8 million data items on 64 processors achieved a 48.43-fold
speedup, while the PSRS required a 44.4-fold speedup. On a variety of shared and distributed memory
machines, the algorithm achieved better than half-linear speedups.
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I. introduction high computational speeds is to use a parallel
computer : that is, one that has several processing
With the growing number of areas in which units or processors [1].

computers are being used, there is an increasing Sorting is one of the most studied problems in
demand for more computing power than today’s computer science, because of its theoretical
machines can deliver, For many applications, interest and practical importance, With the advent
extremely fast computers are being sought to of parallel processing, paralie] sorting has become
process enormous quantities of data in reasonable an important area for algorithm research [2]. Most
amounts of time, One means of attaining very parallel sorts suitable for multiprocessor computers

can be placed into one of two rough categories :
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sorts [1, 2]. Partition-based sorts consist of two
phases: (1) partitiorung the data set into smalles
subsets such that all elerents m one subset are
no greater than any element in another, and (2)
sorting each subset in parailel.

We now consider paraliel sorting algorithms
that were previously presented. One of these,
Parallel Quicksort, has been a popular choice for
research {1. 2, 4, 8, 9]. The basic result is that,
given a sequence S of n distinct elements to be
sorted, Quicksort starts by finding the median m
of S. Element m is now placed in position n/2 of
the sorted sequence. Then S is partitioned into
two subsequences, S1 and S2, of elements smaller
than and larger than m, respectively, The two
subsequences, S1 and S2, are now executed sim-
ultaneously, since each of the two subproblems,
S1 and S2. has the same structure as the original
problem S and contains, at most, half as many
points as 3.

A similar effect happens to Evans and Yousif's
two-way merge-based parallel sort |2, 3], as little
parallelisms can be exploited in the last few
phases of merging. Francis and Mathieson have
noted this problem and proposed a Parallel Merge-
sort {(PMS) which evenly partitions data to be
merged among any number of processors {2, 7].
This sorting algorithm is merge-based, however :
consequently, it involves too many data movements.
Crinn has implemented a combination of Quicksort
and Mergesort, Quickmerge, significantly reducing
the amount of data movement [6]. Its execution
time, however, i5 unstable in the sense that the
pivots (or dividers) selected are not guaranteed
to divide the data to be sorted into ordered
subsets reasonably evenly. In the worst case, a
single processor may have to perform a Mergesort
on nearly all the data in the last phases, which
makes linear speedup impossible.

To overcome the difficulty of data distribution,
Huang and Chow proposed extracting a random
sampling from the data and using the order infor-
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mation of the sample to help the partitioning.
Their method i« called Parallel Sorting by Sam-
chng 1SS 07 To distribute the data evenly.
Shi and Schaeffer proposed Parallel Sorting by
Regular Sampling(PSRS) 12). This method tinds
pivots for partitioning the data into ordered
subsets of approximately equal size by using a
regular sample from sorted sublists of the data.

This paper describes a parallel sorting algorithm
suitable for a variety of multiprocessor archite-
ctures. Parallel Sorting by Median-Median
(PSMM} finds pivots for partitioning the data
into ordered subsets. The method evenly distributes
the data to be sorted since it uses probability the-
ory. In practice, when PSMM runs ou the MasPar
machine, sorting of 8§ million data items on 64
processors achieved a 48.43-fold speedup, while
the PSRS required a 44.4-fold speedup.

1. Parallel Sorting by Median -Median

Let the data set to be sorted on a p-processor
EREW-PRAM muitiprocessor be denoted by X
and the size of X be n. Let X[i:j] be {X[i], X{i
+113,....X[;]}, while 0<i<j{n. For simplicity in
the analysis of the algorithm, we assume X[i]=
X[j), where i =. Also, p/2 refers to | p/2).

Parallel Sorting by Median-Median (PSMM)
has three phases, The psuedo-code for the algor-
ithm is shown in Fig, 1. In the first phase, each
of the p processors sorts a contiguous list of size
w= | nfp| using sequential Quicksort, More pre-
cisely, each processor i{l i< p) sorts a list X
[G-1)w:iw-1] with Quicksort. After this phase,
each processor has acquired data items to be sorted.
In the second phase, we choose the median value of
each processor. The set Y is the median value
vielding a list Y[1), Y([2].....Y(p). This median
value of each processor is a pivot element. Choos-
ing the median value of each processor is very
simple, That location is a half-position of each
processor, The partitioning of X is accomplished
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as follows. Each processor finds where each of
p-1's pivot divides its list, using a binary search,
Mote precisely, each processor i{l <1< p) finds
the index of the largest element no larger than
the jth pivot, j =1, 2....p-1, At this point, we
calculate the size of the sublist each processor
will have. If the size of the sublist does not
satisfy the range around 80% to 120%, we reapply
the sublist of the processor that was not satisfied
using the same method described above in the
second step until that list satisfies the condition,
After doing this, all processors are synchronized.
At this point, each of the p sorted lists of X has
been divided into p soried sublists with the prop-
erty that every item in every list’s ith sorted
sublist is greater than any item in any list’s (i-1)
th sorted sublist for 2<i1<p.

In the last phase, each processor i{l<i<p)
performs a sequential quicksort to require ail the
ith soried sublists of the p lists. After this, all
processors are synchronized and X is sorted.

Fig. 2 illustrates how the PSMM works for n ==
36 and p=23. In phase 1, each processor is assigned
w=n/p =12 contigucus elements to sort. In the
second phase, we choose the median value of
each processor. We will call it a pivot element. In
Fig. 2, the pivot elements are {24, 19, 15}. From
this, we require p-1=2 pivots elements in each
processor using 2 binary seatch. resulting in Fig.
2(e). However, at this time, we check the prob-
ability that each processor has. The median of
the first processor is {2, 6, 11} From this, we
require the p-1=2 pivots (the total pivot is 4)
using a binary search. We also check the prob-
ability. At this time, in order to be satisfied, we
sort them using a sequential Quicksort algorithm,
In Fig. 2(h), the first processor has 14 elements,
a second processor has 10 elements, and a third
has 12 elements, Once each processor receives its
portion of data from the other processor, it can
merge the results into the final sorted array. In
this final partition phase, this method requires a

bound of 2 {n/p]. In this paper. it is shown that
the PSMM tries to achieve almost a load balanc-
ing in practice using the probability condition.

procedure PSMMIX, n, p)

/% X{0 9~1) array to be sorted, n: the $ize of array,
P the mmber of processors */
begin
/¢ phase |:. divide the array into p contigous list and sort
each in parallel v/
gize=n/p
(1) for i=0 to p-t do in parallel
start= i ¥ size
end= gtart + gize -1
if(end >xp) then end » pn - 1
quicksort(X. ctart. end)
endfor
/% phase 11
(a} calculate the median value of sach processor
(b) divide the array by hinary search and
(el apply the proper size by probahility
(4) if not zatizfied (c), reepply to (b)
in ocnly unsatisfied processor =/
{2) for i=0 to p-1 4o in parasllel
Y{i)=X[ (startiend)/2)
endtar
/n divide the array by binary search +/
(3) for =0 to p~1 4o ip parallel
(¢} for i=0 w p-%
2{il=the madisn value folmd in binary search using ¥
subsizeli)=z(i-11+4
endfor
endfor
/% in parallel, count the size of each procesgor and
bucksize s valua i initially zero €/
t5) for i=0 to p-1 &
(5.a) for j=0 o p-1 %
bucksizel 31sbuckeize( § J+subsize( j+1 1-subeize{ i)
epdfor
(5.b) if(the sive of bucksizeli) is notsatisfied around 80x
to 120x)
thet we apply only the processor which is not gatisfied
in conjtion in (2)
apdfor
/v phage I1I: sort using sequential quicksort »/
(6) for i=0 to p~1 e in parallal
start=z[i-11+i
end=z[ 1)
quicksort(X, start. end)
endfor
end

Fig. 1 pseudo code for PSMM
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Fig. 2 PSMM example

{ll. Complexity Analysis

In phase one and part of phase two of the
PSMM, all processors have roughly the same
amount of work to do. In phase two {some part}
and phase three, it is not obvious how evenly the
work is divided because this depends on how well
the data has been partitioned.

Theorem 1. The time complexity of Quicksort
requires O(n log n) in the average case. [1]

Theorem 2. The time complexity of binary
search problem requires at most O(log n) [1].
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Lermma 1, In phase three of the PSMM, each
prucessor merges fess than 2w elements. [1]

Prool. t.onsider any processot 1. where t <1 <X p.

There are three cases:

{1)In case of i==1. All the data to be merged
by processor 1 must be < y,, Since there are
pl~p=-p/2 elements which are)y,, there
are at least (p?—p-—p/2)w/p elements of X
which are >v,. In other words, there are at
most n—{(p*—p—p/2)w/p= (p+p/2yw/p(
2w elements of X which are <y,.

{2)In case of 1=p. All the data to be merged
by processor p must be)y,_,, There are
(p—2)p+p/2 elements which are <y,-;.
That is there are at least (p?—p—p/2}w/p
elements of X which are <y,, or there are
at most n-((p?—2p—p/2}w/p,2w elements
of X which are >y, -,.

(3)1In case of 1<{i{p. All data to be merged by
processor i must be)y,_, and <y, There
are (i—2)p+p/2 elements which are < yi-1»
implying b= ((i—2)p+p/2)w/p elements

of X. On the other hand, there are (p—i)
p—p/2 elements which are)y, As well,
there are w/p-1 elements that fall between
zi and the next highest element in the me-
dian-median, Since the size of X is n, there
are at most 2w-w/p—+1{2w elements of X
for processor 1 to merge,

In conclusion No processor merges more than
2w=2n/p elements in the last phase of the
PSMM. If p? does not divide n evenly, it is easy
to prove that no processor merges more than 2 n/f
p elements,

What 1s the time complexity of PSMM? The
analysis for phase one is easy. (see Theorem 3)

Theorem 3. In the phase one of PSMM, the
time complexity is Olw log w).

Proof. The Initial Quicksort takes O(w log w),
representing the time consumed by each processor
to sort w{ =n/p) data using a sequential quicksort.
{see theorem 1)
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Theorem {. In the PSMM aigorithm, the time
complexity s O(w log w—+p° log w).

Proof. The analysis is presented by phase.

(1) In step 2 of phase 11, it takes O(1).

{2)In step 3 of phase 11, it requires O(1*{p log

" w)) since step 4 of phase Il requires O(p
log w).
That is. steps 2 and 4 of phase Il require O
(p” log w).

(3)In step 5 of phase II, while (5.a) requires
Of(p) and {5.b) requires O(p log w) that
applies recursively each processor in the
worst case. it needs O(p*p log w) =0{ p?
log w). )

(1) Step 6 of phase III requires O(2w log W)
since the size of data to be merged by any
processor is always less than 2w,

The summation of the time of all three phases
gives a time complexity for the PSMM of O(w
logw + p? log w =+ 2w log w), which is asymptotic
to Ol{w log w) =0((n/p) log n) when n}=p’ 18

The bound on the size of the data to be merged
in the PSMM is an important difference which
other partitioned-based sorts, such as the PSRS,
do have while Quickmerge and PSS do not.
Theoretically, the PSMM is optimal when n = p°,

)
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Fig. 3 Speedup of PSRS
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Fig. 4 Dynamic Huffman Method

regardless of the distribution of the original data.
Two final points need to be addressed. First, the
algorithm and its analysis are based on there
being no duplicate elements in the list to be
sorted. Second, it is possible to use more than p
(p-1) elements in this method for choosing the
median,

IV. Experimental Results

To implement the PSMM on the MasPar using
randomly generated data, 32-bit integers with
various distributions were tested. No tests were
made for duplicate elements, of which there were
undoubtedly a few. The size of the array to be
sorted ranged from 0.1 million to 8 million
elements. Experiments were done using 2, 4, 8,
16, 32. 64 processors on the MasPar machine,
Each data point presented in this section was
obtained as the average of 20 program executions,
each on a different set of test data.

The experiement used the sequential Quicksort
time from the PSRS (2], which provides the
optimal seguential sort. It needs the speedups
which evaluate a new parallel algorithm for some
problem. Speedup is defined as the time required
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to solve the problem:that 1s, the time elapsed
froms the mooment the algorithns starts to the
moreltd 1 ternunates 1.

{t is reazonable to assiume that the time of
sorting n integers using the improved QQuicksort
on cne PE 1s

te(n?=cnlogn,

where ¢ is a constant independant of size n,
Sequential times for lists of more than (.2 million
elements were calculated using the formular 2] :

nlog n
100,000 log 100 000

te(n)= Xt (100,000).

where 0.4 million < n <8 million and t, (100,000}
=4,63 seconds. Note that if one used this formula
to compute 1,.(200,000), the result is almost a
perfect match with the corresponding cxperimental

time.

Table 1. Sorting times of PSMM
n PE 1 2 48 .16 32|64
L -+ - - —— ———

1{}00{)0 6.63, 3.48; 2.04] 1.48] L04] 1.05 144

ZUU,OO(J 14.00| 7.25| 3.86| 2.48| 1.84| 1.45 l.hS

400.000, 19.7111519! 7.91 486 2.62 2.0'8: 1.838

s00.000| 62.62] — |20.28] 92| 499 3.11 245
| Loo0.000; 79.56 — 2453 1208, 6.28; 3.14] 2.89
12,000,000 w_‘ '__ T
1.000.000] 2 B0.17] -1 =] = syl sz
8000000, 72228) - | - | — | — | - |52

Table 2. Sorting times of PSR§

IR E

l(](hﬂﬂ() H.h3 3.6 711

- _— —— ————p—— -

'>()0000 14.:)0, 8.08! 4,>o 274 lfl 143 183
400000 19.71 16.77: £60- 5.58 313 211 990

300000*_52 62 - ~ jaus. b7| 5 3.50] 286
Lom0.000| 7956 - 208811313 697 438 312
2000.000 167.36] — | - |13f3 7.87| 519
100,000 0.7 - - 14.83) 870
- — i} ——— _l_

8000000 732280 - | — ° — | — @ - 11649
I s H i
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Table 3. RDF As of PSMM
[ PE R A R VN TR
i luul)()U Lo L0z LuMg 1»431r13b3i <‘

20,000 1m4l |mx]_1')w J'il"! 1.443

| N
000 “x,h' 1010, LO97) 1,052, 1”,&5’
1

_BOU000| - L1322 1')4\>| 1.353 J L463| 1.072
L0000, - l cootl 2002 Lege! 1902 1.945|
s = - || L] 2o
somoool b b~ 2085 2,076
sow.000 - | - . — - | - | 204

Table 4. RDF As of PSMM

n PE | 2 8 i 16 @ 6
| lo0000| Lot 1008 1030] Lo, -
—7(J(l ()()0| 1002 I(J(BI 1. Ol)l IO‘V) 1043 -

mnmu' Loo, oozt oo vor7! vowl <~

. —_— —

800,000 ' L0z Lo0s| 1017|1026 1,062
Loonom ! - il.OOli_l.UO«l' Lo L021 1047
o0’ - [ 1.009] LOI6] 1045
1,000,000 J ST oo 1oz
BO00.00, — - | B B

Table I shows the time required to sort using
the PSMM, and Fig. 3 plots the speedups
achieved. As the problem size increases, the task
granularity increases, offsetting the overheads of
the algorithms and resulting in better speedups.
Sorting 8 million items with 641 processors gave a
4%3.43-fold speedup.

For comparison purposes, the PMS, the
Quickmerge, the PSS, and the PSRS were
implemented. For brevity, only the PSRS resuits
are shown, 4s they are significantly better than
those of the PMS and the PSS. Table II shows
the time required to sort the elements using the
PSRS, and Fig. 1 plots the speedups achieved.

The RDFA (Rclative Derivation of the size of
the largest partition From the Average size)
measures for the PSMM are shown in Table I1I
and the PSRS in Table [V. For the PSMM, the
data clearly shows that, as the number of processors



20 The Journal of the Acoustical Society of Korea, Vol, 14, No, 1E (199!

increases, s0 does the RDFA metric. However,
the PSRS is the claim that the data is evenly
partitioned : so, the RDF A is almost constant.

From the data obtained, a few observations can
he made on the performance of the PSMM,

(1} As the number of PEs increases, the speedups
are good, For example, when sorting 8 million
32-bit integers with 64 PEs, the PSMM has a
speedup of a 48.43-fold while PSRS has a 44.
4-fold speedup.

(2} Although Table 1V shows that the PSRS
RDF As are consistently close to 1.0, the PSMM
RDFAs are not close to 1.0, but are almost near
to 1.0.

In general, the speedup relationships of the
five algorithms implememted are as follows :

PMS < Quickmerge < PSS < PSRS < PSMM,

The speedups of the PMS are found to be
rather poor. We cannot confirmm Francis and
Masthijeson's claim that the PMS has a linear
speedup [2]. The PSMM has been implemented
on the shared memory MasPar machine. A 48.
43-fold speedup was achieved sorting 8 million
data items on 64 processors, The sorting was
done in each processor’s local memory, while the
global memory was used to communicate data.

V. Conclusion

Long memory latency and the overhead of
scheduling and synchronization are two critical
factors that greatly affect the speedup of a parallel
algorithm on the present parallel machine [1, 2].
Parallel Sorting by Median-Median is intended to
rinimize both. Experiments on the MasPar
machine (SIMD machine) make it clear that good
speedups for parallel sorting is indeed achievable,
The results reported here are quite encouraging,
considering that sorting is generally believed a
hard problem to parallelize. In the future, we
think about distributing data evenly in the pro-

cess of sorting.
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