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Abstract

This paper presents a parallel sorting algorithm suitable for the SIMD multiprocessor. The algorithm finds pivots 

for partitioning the data into ordered subsets. The data can be evenly distributed to be sorted since it uses the prob 

ability theory. For n data elements to be sorted on p processors, when n 2 p2, the algorithm is shown to be 

asymptotically optimal. In practice, sorting 8 million data items on 64 processors achieved a 48.43-fold 

speedup, while the PSRS required a 44.4-fold speedup. On a variety of shared and distributed memory 

machines, the algorithm achieved better than half-linear speedups.

요 약

본 논문은 S1MD 병렬 처리 컴퓨터에 적합한 병렬 분류 알고리즘을 제시키 위해서, 다음과 같이 수행이 된다. 첫째, 비순 

서화된 데이타 집합을 p개의 프로세서로 할당시킨후에 순차적 quicksorts 분류한다. 그 다음으로, 분류된 각 프로세서의 

중위수값을 구한다음 이 값에 의해서 각 프로세서에 데이타 값을 할당시킨다. 각 프로세서에 할당된 데이타가 정확하게 분 

배가 되도록 중위수의 중위수 값을 구해서 각 프로세서에 적 합한 데이타를 다시 할당 시키 게 된다. 이때 각 프로세서가 지닌 

데이타의 수는 확률이론을 이용하였다. 마지막으로, 각 프로세서에 할당된 데이타를 순차적 quicksort로 분류하면 된다. 여 

기서 분류될 데이타 ri가 nap?일때 본 알고리즘은 최적이 되게됨을 볼 수가 있다. 실제적 구현에 있어서, 64개 프로 

세서를 이용해서 8백만개의 데이타를 분류할때 PSRS 방법의 speedup은 44.4인 반면에 본 알고리즘은 48.43이 

된다. 즉, 다양한 공용과 분산 기억장치 기계에 관해서, 본 알고리즘의 speedup은 거의 절반 이상의 선형시간으 

로서 성취가 됨을 볼 수가 있다.

I. Introduction

With the growing number of areas in which 

computers are being used, there is an increasing 

demand for more computing power than today's 

machines can deliver. For many applications, 

extremely fast computers are being sought to 

process enormous quantities of data in reasonable 

amounts of time. One means of attaining very 

high computational speeds is to use a parallel 

comp니ter : that is, one that has several processing 

units or processors [1].

Sorting is one of the most studied problems m 

computer science, because of its theoretical 

interest and practical importance. With the advent 

of parallel processing, parallel sorting has become 

an important area for algorithm research [2]. Most 

parallel sorts suitable for multiprocessor computers 

can be placed into one of two rough categories :

(1) merge-based sorts, and (2) partition-based 
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sorts [1, 2]. Partition-based sorts consist of two 

phases : (1) partitioning the data set. into smallei 

subsets such that all elements m one subset are 

no greater than any element in another, and (2) 

sorting each subset in parallel.

We now consider parallel sorting algorithms 

that were previously presented. One of these. 

Parallel Quicksort, has been a popular choice for 

research [1, 2, 4, 8, 9]. The basic result is that, 

given a sequence S of n distinct elements to be 

sorted, Quicksort starts by finding the median m 

of S. Element m is now placed in position n/2 of 

the sorted sequence. Then S is partitioned into 

two subsequences, SI and S2, of elements smaller 

than and larger than m, respectively. The two 

subsequences, SI and S2, are now executed sim­

ultaneously, since each of the two subproblems. 

Si and S2, has the same structure as the original 

problem S and contains, at most, half as many 

points as S.

A similar effect happens to Evans and Yousif's 

two-way merge-based parallel sort [2, 3], as little 

parallelisms can be exploited in the last few 

phases of merging. Francis and Mathieson have 

noted this problem and proposed a Parallel Merge- 

sort(PMS) which evenly partitions data to be 

merged among any number of processors [2, 7]. 

This sorting algorithm is merge-based, however : 

consequently, it involves too many data movem으nts. 

Quinn has implemented a combination of Quicksort 

and Mergesort, Quickmerge, significantly reducing 

the amount of data movement [6]. Its execution 

time, however, is unstable in the sense that the 

pivots (or dividers) selected are not guaranteed 

to divide the data to be sorted into ordered 

subsets reasonably evenly. In the worst case, a 

single processor may have to perform a Mergesort 

on nearly all the data in the last phases, which 

makes linear speedup impossible.

To overcome the difficulty of data distribution, 

Huang and Chow proposed extracting a random 

sampling from the data and using the order infor­

mation of the sample to help the partitioning. 

Their method is called Parallel Sorting by Sam-

i PSS > d To distribute the data evenly, 

Shi and Schaeffer proposed Farall이 Sorting by 

Regular Sampling(PSRS) L2J. This method finds 

pivots for partitioning the data into ordered 

subsets of approximately equal size by using a 

regular sample from sorted sublists of the data.

This paper describes a parallel sorting algorithm 

suitable for a variety of multiprocessor archite­

ctures. Parallel Sorting by Median-Median 

(PSMM) finds pivots for partitioning the data 

into ordered subsets. The method evenly distributes 

the data to be sorted since it uses probability the­

ory. In practice, when PSMM runs on the MasPar 

machine, sorting of 8 million data items on 64 

processors achieved a 48.43-fold speedup, while 

the PSRS required a 44.4-foid speedup.

H. Parallel Sorting by Median-Median

Let the data set to be sorted on a p-processor 

EREW-PRAM multiprocessor be denoted by X 

and the size of X be n. Let X[i : j] be {X[i], X[i 

+ 1」,…,X[j]}, while 0 M i M j〈n. For simplicity m 

the analysis of the algorithm, we assume X[i]— 

X[j ], where i=j. Also, p/2 refers to Lp/2」.
Parallel Sorting by Median-Median (PSMM) 

has three phases. The psuedo-code for the algor­

ithm is shown in Fig. 1. In the first phase, each 

of the p processors sorts a contiguous list of size 

w= Ln/p」using sequential Quicksort. More pre­

cisely, each processor i(lMiMp) sorts a list X

: iw-1] with Quicksort. After this phase, 

each processor has acquired data items to be sorted. 

In the second phase, we choose the median value of 

each processor. The set Y is the median value 

yielding a list Y[l], Y[2],...,Y[p]. This median 

value of each processor is a pivot element. Choos­

ing the median value of each processor is very 

simple. That location is a half-position of each 

processor. The partitioning of X is accomplished
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as follows. Each processor finds where each of 

p-ls pivot divides its list, using a binary search. 

More precisely, each processor i(lMiMp) finds 

the index of the largest element no larger than 

the jth pivot, j = 1, At this point, we

calculate the size of the sublist each processor 

will have. If the size of the sublist does not 

satisfy the range around 80% to 120%, we reapply 

the sublist of the processor that was not satisfied 

using the same method described above in the 

second step until that list satisfies the condition. 

After doing this, all processors are synchronized. 

At 나lis point, each of the p sorted lists of X has 

been divided into p sorted sublists with the prop­

erty that every item in every list's ith sorted 

sublist is greater than any item in any list's (i-1) 

th sorted sublist for 2 M i M p.

In the last phase, each processor i(lMiMp) 

performs a sequential quicksort to require all the 

ith sorted sublists of the p lists. After this, all 

processors are synchronized and X is sorted.

Fig. 2 illustrates how the PSMM works for n = 

36 and p = 3. In phase 1, each processor is assigned 

w —n/p= 12 contiguous elements to sort. In the 

second phase, we choose the median value of 

each processor. We will call it a pivot element. In 

Fig. 2, the pivot elements are {24, 19, 15}. From 

this, we require p-1 = 2 pivots elements in each 

processor using a binary search, resulting in Fig. 

2(e). However, at this time, we check the prob­

ability that each processor has. The median of 

the first processor is {2, 6, 11). From this, we 

require the p-1 =2 pivots (the total pivot is 4) 

using a binary search. We also check the prob­

ability. At this time, in order to be satisfied, we 

sort them using a sequential Quicksort algorithm. 

In Fig. 2(h), the first processor has 14 elements, 

a second processor has 10 elements, and a third 

has 12 elements. Once each processor receives its 

portion of data from the other processor, it can 

merge the results into the final sorted array. In 

this final partition phase, this method requires a 

bound of 2 Ln/pJ. In this paper, it is shown that 

the PSMM tries to achieve almost a load balanc 

ing in practice using the probability condition.

procedure PSMM(X, n, p)

/• X[0：n~lL array to be sorted, n- the size of array, 
p- the nunber of processors ,/ 

begin 
/■ phase I: divide the array into p contigous list and sort 

each in parallel «/ 
size=n/p

(1) for i=0 to p-i do in parallel 
start  i  size 
end" start + size -1 
i£(end >■ n) then end ® n - 1 
quiduort(X. start, end) 

endfor 
/« pbase II：

* *

(a) calculate the Mdian value of eadi processor
(b) divide the array by binary search and
(c) apply the proper size W probability
(d) if not satisfied (c). reapply to (b)

in only unsatisfied processor •/
(2) for i=0 to p-1 do in parallel

YCi]-X[(start4«nd)/2] 
endfor 
/« divide the array by binary search •/

(3) for j«0 to pT da in parallel
(4) for 1=0 to p-1

z[i]=the Mdian value folmd in binary search using Y 
subsize£i>z[i-l]+i 

endfor 
endfor 
/« in parallel, count the size of each processor and 

hucKsize's value is initially zero «/
(5) for 10  to p-1 do*

(5.a) for j«0 to p-1 do 
bucksizet j]-budcsize[j ]+subsize[ j+1 J-subeizeCj] 

endfor
(5.b) if (the size of bucKsizeEi] is notsatisfied around 80x 

to 120x)
then we sly only the processor which is not satisfied 

in coniticn in (2) 
endfor 
/• phase III: sort using sequential quicksort */

(6) for i=0 to p-1 do in parallel
start=z[i-l]+i 
ena=z[i] 
quicKsort(X, start, end) 

endfor 
⑶d

Fig. 1 pseudo code for PSMM

(a) original Mta(n=35)

16 2 17 24 33 28 30 1 0 27 9 25
_________ processor
|34|꺼 1이 7|21|피 히3디12]奇
_________ processor #2(12-23)_______
「时顽 i|14|기띄이 10[쩌詛20[ 5]

processor #3(24-35)
(b) Riase I (distribution)
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|3[ 끼 9|이기끼25|끼께꾀꿔
XO8"or

「기 8问끠끼!而미21|끠찌34]히 

processor 92
「宥 4| 5| 巾。|1巾5|2이긔찌31|必| 

processor f3
(c) Phase I(Quicksort)

「2「丨心15 I

(d) Phase IKaedian of each processor)

[ 이 1| 기 이 16|1기끼2다2기쬐끠3이
.#1 , n #2 H #3 」
I 7| 时비1기외诃이킈끼씨피3可

: 1 " 产. . 아~ 」
I 3| 4| 5| 6|10|k|띄2이끼끼하5기
1- *1  」L #2」L 偽」

(e) Phase 11 (divide part by Median value)

2 6 11 19 24

(f) Phase II(divide part by Median value)

I 6| 1| 2| 이에1기끼끠끼끼이3히
: #1」내卩 L Q 」
I 7| 이니I기1이에间이끼씨3이회
L n JL #2 JL 13 J
[ 히 4] 5「6|10|i4|15|2이끼찌3帀기
L #1 ■叫W」L松」L "」I偽 J

(g) Phase II(distribution)

42 외고0也1의믜의11의희坦 
processor #1

!间1기间1이21恆）2이께피15|

財~j 破끼 2히 3이히药 |3对회쩌이 32] 
processor #3

(h) Phase II(distribution)

Oi 3| 4| 5| 6| 기 이 이1■이 11[1 기 13 
processor n 

「丽可히項|1아；9[찌21|끠끼 

processor ，2
云尽2히끼2히291이3】 I끼쐬34屋] 

processor <3
(i) Phase IIKsequential Quicksort)

Fig. 2 PSMM example

HI. Complexity An치ysi오

In phase one and part of phase two of the 

PSMM, all processors have roughly the same 

amount of work to do. In phase two (some part) 

and phase three, it is not obvious how evenly the 

work is divided because this depends on how well 

the data has been partitioned.

Theorem 1. The time complexity of Quicksort 

requires O(n log n) in the average case. [1]

Theorem 2. The time complexity of binary­

search problem requires at most O(log n) [1 ].

Lemma 1. In phase three of the PSMM, each 

processor merges less than 2w elements. [1]

Proof l.onsider any processor i. where i M * p. 

There are three cases :

(1) In case of i = L All the data to be merged 

by processor 1 must be M y】.Since there are 

p2—p-p/2 elements which are>yb there 

are at least (p2-p~p/2)w/p elements of X 

which are)y^. In other words, there are at 

most n— (p2 —p —p/2)w/p= (p + p/2)w/p< 

2w elements of X which are M yb

(2) In case of i=p. All the data to be merged 

by processor p must be >yp-b There are 

(p-2)p + p/2 elements which are yp-!. 

That is there are at least (p2 —p —p/2)w/p 

elements of X which are M yb or there are 

at most n-((p2-2p-p/2)w/p,2w elements 

of X which are〉yp~】.

(3) In case of 1 <i <p. All data to be merged by 

processor i must be〉- 】 and My. There 

are (i —2)p + p/2 elements which are M yi-b 

implying lb= ((i — 2)p + p/2)w/p elements 

of X. On the other hand, there are (p —i) 

p —p/2 elements which are〉.  As w이 1, 

there are w/p-1 elements that fall between 

zi and the next highest element in the me­

dian-median. Since the size of X is n, there 

are at most 2w-w/p+l<2w elements of X 

for processor i to merge.

*

*

In conclusion No processor merges more than 

2w = 2n/p elements in the last phase of the 

PSMM. If pz does not divide n evenly, it is easy 

to prove that no processor merges more than 2 n/ 

p elements.

What is the time complexity of PSMM? The 

analysis for phase one is easy. (see Theorem 3)

Theorem 3. In the phase one of PSMM, the 

time complexity is O(w log w).

Proof. The initial Quicksort takes O(w log w), 

representing the time consumed by each processor 

to sort w( = n/p) data using a sequential quicksort, 

(see theorem 1)
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Theorem 4. In the PSMM algorithm, the time 

complexity is O(w log w + p2 log w).

Proof. The analysis is presented by phase.

(1) In step 2 of phase II, it takes 0(1).

(2) In step 3 of phase II, it requires 0( 1  (p log 

'w)) since step 4 of phase II requires 0(p

*

log w).

That is, steps 2 and 시 of phase II require O 

(p2 log w).

(3) In step 5 of phase II, while (5.a) requires 

0(p) and (5.b) requires 0(p log w) that 

applies recursively each processor in the 

worst case, it needs O(pp  log w)=0( p2 

logw).

*

(4) Step 6 of phase III requires 0(2w log w) 

since the size of data to be merged by any 

processor is always less than 2w.

The summation of the time of all three phases 

gives a time complexity for the PSMM of 0(w 

logw+ p2 log w + 2w log w), which is asymptotic 

to 0(w log w) = 0( (n/p) log n) when n〉=

The bound on the size of the data to be merged 

in the PSMM is an important difference which 

other partitioned-based sorts, such as the PSRS, 

do have while Quickmerge and PSS do not. 

Theoretically, the PSMM is optimal when n 藉 p2,

Fig. 3 Speedup of PSRS

Fig. 4 Dynamic Huffman Method

regardless of the distribution of the original data. 

Two final points need to be addressed. First, the 

algorithm and its analysis are based on there 

being no duplicate elements in the list to be 

sorted. Second, it is possible to use more than p 

(p-1) elements in this method for choosing the 

median.

IV. Experimental Results

To implement the PSMM on the MasPar using 

randomly generated data, 32-bit integers with 

various distributions were tested. No tests were 

made for duplicate elements, of which there were 

undoubtedly a few. The size of the array to be 

sorted ranged from 0.1 million to 8 million 

elements. Experiments were done using 2, 4, 8, 

16, 32, 64 processors on the MasPar machine. 

Each data point presented in this section was 

obtained as the average of 20 program executions, 

each on a different set of test data.

The experiement used the sequential Quicksort 

time from the PSRS [2], which provides the 

optimal sequential sort. It needs the speedups 

which evaluate a new parallel algorithm for some 

problem. Speedup is defined as the time required 
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to solve the problem; that is, the time elapsed 

from the moment 나ic algorithm starts to the 

moment it terminates l 1 i.

U is reasonable to assume that the time of 

sorting n integers 니sing the improved Quicksort 

on one PE is

tpe(n) = c n log n,

where c is a constant independant of size n. 

Sequential times for lists of more than 0.2 million 

elements were calculated using the formular [2]:

()_ n log n 
p" 100,000 log 100,000 X tpe(100,000).

where 0.4 million n 8 million and tpe(100,000) 

= 6.63 seconds. Note that if one used this formula 

to compute ^(200,000), the result is almost a 

perfect match with the corresponding experimental 

time.

Ta비e 1- Sorting times of PSMM

n PE 1 2 4 8 16 32 64

100,000 6.63 3.48 2.04 1.48 1.04 1.05 1.44

200,000 14.00 7.25 3.86 2.48 1.84 1.45 1.68

400,000 19.71 15.19 7.91 4.86 2.62 2.08 1.88

800,000 62.62 - 20.28 9.62 4.99 3.11 2.45

1,000,000 79.56 一 2&53 12.18 6.28 3.14 2.89

2,000,000 167.56 一 一 一 12.86 6.34 4.56

4,000,000 350.17 - 一 一 一 13.17 8.21

8,000,000 732.28 - - 一 一 - 15.12

Ta비合 2. Sorting times of PSRS

n PE 1 2 4 亠 16 32 64

100,000 6.63 3.86 2.14 1.56 1.06 1.()9 1.66

200.000 14.00 8.08 4.20 2.74 1.71 1.43 1.83

400,000 19.71 16.77 8.60 5.58 3.13 2.11 2.20

800,000 62.62 - 21.51 10.67 5.84 3.50 2.86

1,000,000 79.56 - 29.88 13.13 6.97 4.38 3.12

2,000,000 167.56 一 - - 13.73 7.87 5.19

4,000,000 350.17 - 一 - - 14.83 8.70

8,000,000 732.28 一 一 - 一 - 16.49

I n PE : 2 - 4 ! 8 ■ 16 ! 32 i 64 |

Table 3. RDF As of PSMM

100,000 1.025 1.089 1.245 1.368 —

200,000 1.002 1.010 1.097 1 nro 
i. 1.383

—

400,000 1.004 1.108 1.212 1.315 1.443

800,000 一 1.132 1.245 1.353 1.463 1.072

1.000.000

2,000,000

一 2.001 2.002 1.896 1.902 1.945

— - 一 1.578 1.998 2.005

4,000,000 一 一 — 2.065 2.076

8,000,000 - 一 - — 2.047

Table 4. RDFAs of PSMM

n PE 2 4 8 16 32 64

100,000 1.001 1.008 1.030 1.074 -

200,000 1,002 1.003 1.012 1.032 1.043 -

400,000 1.001 1.002 1.008 1.017 1.044 -

800,000 — 1.002 1.005 1.017 1.026 1.062

1,000,000 - 1.001 1.004 1.010 1.021 1.047

2,000,000 - - 1.009 1.016 1.045

4,000,000 — 一 - - 1.001 1.026

8.000.000 一 - 一 1.017

Table I shows the time required to sort using 

the PSMM, and Fig. 3 plots the speedups 

achieved. As the problem size increases, the task 

granularity increases, offsetting the overheads of 

the algorithms and resulting in better speedups. 

Sorting 8 million items with 64 processors gave a 

48.43-fold speedup.

For comparison purposes, the PMS, the 

Quickmerge, the PSS, and the PSRS were 

implemented. For brevity, only the PSRS results 

are shown, as they are significantly better than 

those of the PMS and the PSS. Table II shows 

the time required to sort the elements using the 

PSRS, and Fig. 4 plots the speedups achieved.

The RDFA (Relative Derivation of the size of 

the largest partition From the Average size) 

measures for the PSMM are shown in Table III 

and the PSRS in Table IV. For the PSMM, the 

data clearly shows that, as the number of processors 
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increases, so does the RDFA metric. However, 

the PSRS is the claim that the data is evenly 

partitioned : so, the RDFA is almost constant.

From the data obtained, a few observations can 

be made on the performance of the PSMM.

(1) As the number of PEs increases, the speedups 

are good. For example, when sorting 8 million 

32-bit integers with 64 PEs, the PSMM has a 

speedup of a 48.43-fold while PSRS has a 44. 

4-fold speedup.

(2) Although Table IV shows that the PSRS 

RDF As are consistently close to 1.0, the PSMM 

RDF As are not close to 1.0, but are almost near 

to 1.0.

In general, the speedup relationships of the 

five algorithms implememted are as hallows :

PMS M Quickmerge M PSS M PSRS M PSMM.

The speedups of the PMS are found to be 

rather poor. We cannot confirm Francis and 

Masthieson's claim that the PMS has a linear 

speedup [2]. The PSMM has been implemented 

on the shared memory MasPar machine. A 48. 

43-fold speedup was achieved sorting 8 million 

data items on 64 processors. The sorting was 

done in each processor's local memory, while the 

global memory was used to communicate data.

V. Concl니sion

Long memory latency and the overhead of 

scheduling and synchronization are two critical 

factors that greatly affect the speedup of a parallel 

algorithm on the present parallel machine [1, 2]. 

Parallel Sorting by Median-Median is intended to 

minimize both. Experiments on the MasPar 

machine (SIMD machine) make it clear that good 

speedups for parallel sorting is indeed achievable. 

The results reported here are quite encouraging, 

considering that sorting is generally believed a 

hard problem to parallelize. In the future, we 

think about distributing data evenly in the pro­

cess of sorting.
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