
14

Parallel Sorting Algorithm by Median-Median

중위수의 중위수에 의한 병렬 분류 알고리즘

Yong Sik Min*

*Hoseo Univ, Dept. of Computer Science

접수일 자 : 1994 년 8 월 30일

민 용 스】*

Abstract

This paper presents a parallel sorting algorithm suitable for the SIMD multiprocessor. The algorithm finds pivots

for partitioning the data into ordered subsets. The data can be evenly distributed to be sorted since it uses the prob

ability theory. For n data elements to be sorted on p processors, when n 2 p2, the algorithm is shown to be

asymptotically optimal. In practice, sorting 8 million data items on 64 processors achieved a 48.43-fold

speedup, while the PSRS required a 44.4-fold speedup. On a variety of shared and distributed memory

machines, the algorithm achieved better than half-linear speedups.

요 약

본 논문은 S1MD 병렬 처리 컴퓨터에 적합한 병렬 분류 알고리즘을 제시키 위해서, 다음과 같이 수행이 된다. 첫째, 비순

서화된 데이타 집합을 p개의 프로세서로 할당시킨후에 순차적 quicksorts 분류한다. 그 다음으로, 분류된 각 프로세서의

중위수값을 구한다음 이 값에 의해서 각 프로세서에 데이타 값을 할당시킨다. 각 프로세서에 할당된 데이타가 정확하게 분

배가 되도록 중위수의 중위수 값을 구해서 각 프로세서에 적 합한 데이타를 다시 할당 시키 게 된다. 이때 각 프로세서가 지닌

데이타의 수는 확률이론을 이용하였다. 마지막으로, 각 프로세서에 할당된 데이타를 순차적 quicksort로 분류하면 된다. 여

기서 분류될 데이타 ri가 nap?일때 본 알고리즘은 최적이 되게됨을 볼 수가 있다. 실제적 구현에 있어서, 64개 프로

세서를 이용해서 8백만개의 데이타를 분류할때 PSRS 방법의 speedup은 44.4인 반면에 본 알고리즘은 48.43이

된다. 즉, 다양한 공용과 분산 기억장치 기계에 관해서, 본 알고리즘의 speedup은 거의 절반 이상의 선형시간으

로서 성취가 됨을 볼 수가 있다.

I. Introduction

With the growing number of areas in which

computers are being used, there is an increasing

demand for more computing power than today's

machines can deliver. For many applications,

extremely fast computers are being sought to

process enormous quantities of data in reasonable

amounts of time. One means of attaining very

high computational speeds is to use a parallel

comp니ter : that is, one that has several processing

units or processors [1].

Sorting is one of the most studied problems m

computer science, because of its theoretical

interest and practical importance. With the advent

of parallel processing, parallel sorting has become

an important area for algorithm research [2]. Most

parallel sorts suitable for multiprocessor computers

can be placed into one of two rough categories :

(1) merge-based sorts, and (2) partition-based

Parall이 Sorting Algorithm bv Median Median 15

sorts [1, 2]. Partition-based sorts consist of two

phases : (1) partitioning the data set. into smallei

subsets such that all elements m one subset are

no greater than any element in another, and (2)

sorting each subset in parallel.

We now consider parallel sorting algorithms

that were previously presented. One of these.

Parallel Quicksort, has been a popular choice for

research [1, 2, 4, 8, 9]. The basic result is that,

given a sequence S of n distinct elements to be

sorted, Quicksort starts by finding the median m

of S. Element m is now placed in position n/2 of

the sorted sequence. Then S is partitioned into

two subsequences, SI and S2, of elements smaller

than and larger than m, respectively. The two

subsequences, SI and S2, are now executed sim­

ultaneously, since each of the two subproblems.

Si and S2, has the same structure as the original

problem S and contains, at most, half as many

points as S.

A similar effect happens to Evans and Yousif's

two-way merge-based parallel sort [2, 3], as little

parallelisms can be exploited in the last few

phases of merging. Francis and Mathieson have

noted this problem and proposed a Parallel Merge-

sort(PMS) which evenly partitions data to be

merged among any number of processors [2, 7].

This sorting algorithm is merge-based, however :

consequently, it involves too many data movem으nts.

Quinn has implemented a combination of Quicksort

and Mergesort, Quickmerge, significantly reducing

the amount of data movement [6]. Its execution

time, however, is unstable in the sense that the

pivots (or dividers) selected are not guaranteed

to divide the data to be sorted into ordered

subsets reasonably evenly. In the worst case, a

single processor may have to perform a Mergesort

on nearly all the data in the last phases, which

makes linear speedup impossible.

To overcome the difficulty of data distribution,

Huang and Chow proposed extracting a random

sampling from the data and using the order infor­

mation of the sample to help the partitioning.

Their method is called Parallel Sorting by Sam-

i PSS > d To distribute the data evenly,

Shi and Schaeffer proposed Farall이 Sorting by

Regular Sampling(PSRS) L2J. This method finds

pivots for partitioning the data into ordered

subsets of approximately equal size by using a

regular sample from sorted sublists of the data.

This paper describes a parallel sorting algorithm

suitable for a variety of multiprocessor archite­

ctures. Parallel Sorting by Median-Median

(PSMM) finds pivots for partitioning the data

into ordered subsets. The method evenly distributes

the data to be sorted since it uses probability the­

ory. In practice, when PSMM runs on the MasPar

machine, sorting of 8 million data items on 64

processors achieved a 48.43-fold speedup, while

the PSRS required a 44.4-foid speedup.

H. Parallel Sorting by Median-Median

Let the data set to be sorted on a p-processor

EREW-PRAM multiprocessor be denoted by X

and the size of X be n. Let X[i : j] be {X[i], X[i

+ 1」,…,X[j]}, while 0 M i M j〈n. For simplicity m

the analysis of the algorithm, we assume X[i]—

X[j], where i=j. Also, p/2 refers to Lp/2」.
Parallel Sorting by Median-Median (PSMM)

has three phases. The psuedo-code for the algor­

ithm is shown in Fig. 1. In the first phase, each

of the p processors sorts a contiguous list of size

w= Ln/p」using sequential Quicksort. More pre­

cisely, each processor i(lMiMp) sorts a list X

: iw-1] with Quicksort. After this phase,

each processor has acquired data items to be sorted.

In the second phase, we choose the median value of

each processor. The set Y is the median value

yielding a list Y[l], Y[2],...,Y[p]. This median

value of each processor is a pivot element. Choos­

ing the median value of each processor is very

simple. That location is a half-position of each

processor. The partitioning of X is accomplished

16 The Journal of 나Acoustical Society of Korea, Vol. 14. No. IE (1995)

as follows. Each processor finds where each of

p-ls pivot divides its list, using a binary search.

More precisely, each processor i(lMiMp) finds

the index of the largest element no larger than

the jth pivot, j = 1, At this point, we

calculate the size of the sublist each processor

will have. If the size of the sublist does not

satisfy the range around 80% to 120%, we reapply

the sublist of the processor that was not satisfied

using the same method described above in the

second step until that list satisfies the condition.

After doing this, all processors are synchronized.

At 나lis point, each of the p sorted lists of X has

been divided into p sorted sublists with the prop­

erty that every item in every list's ith sorted

sublist is greater than any item in any list's (i-1)

th sorted sublist for 2 M i M p.

In the last phase, each processor i(lMiMp)

performs a sequential quicksort to require all the

ith sorted sublists of the p lists. After this, all

processors are synchronized and X is sorted.

Fig. 2 illustrates how the PSMM works for n =

36 and p = 3. In phase 1, each processor is assigned

w —n/p= 12 contiguous elements to sort. In the

second phase, we choose the median value of

each processor. We will call it a pivot element. In

Fig. 2, the pivot elements are {24, 19, 15}. From

this, we require p-1 = 2 pivots elements in each

processor using a binary search, resulting in Fig.

2(e). However, at this time, we check the prob­

ability that each processor has. The median of

the first processor is {2, 6, 11). From this, we

require the p-1 =2 pivots (the total pivot is 4)

using a binary search. We also check the prob­

ability. At this time, in order to be satisfied, we

sort them using a sequential Quicksort algorithm.

In Fig. 2(h), the first processor has 14 elements,

a second processor has 10 elements, and a third

has 12 elements. Once each processor receives its

portion of data from the other processor, it can

merge the results into the final sorted array. In

this final partition phase, this method requires a

bound of 2 Ln/pJ. In this paper, it is shown that

the PSMM tries to achieve almost a load balanc

ing in practice using the probability condition.

procedure PSMM(X, n, p)

/• X[0：n~lL array to be sorted, n- the size of array,
p- the nunber of processors ,/

begin
/■ phase I: divide the array into p contigous list and sort

each in parallel «/
size=n/p

(1) for i=0 to p-i do in parallel
start i size
end" start + size -1
i£(end >■ n) then end ® n - 1
quiduort(X. start, end)

endfor
/« pbase II：

* *

(a) calculate the Mdian value of eadi processor
(b) divide the array by binary search and
(c) apply the proper size W probability
(d) if not satisfied (c). reapply to (b)

in only unsatisfied processor •/
(2) for i=0 to p-1 do in parallel

YCi]-X[(start4«nd)/2]
endfor
/« divide the array by binary search •/

(3) for j«0 to pT da in parallel
(4) for 1=0 to p-1

z[i]=the Mdian value folmd in binary search using Y
subsize£i>z[i-l]+i

endfor
endfor
/« in parallel, count the size of each processor and

hucKsize's value is initially zero «/
(5) for 10 to p-1 do*

(5.a) for j«0 to p-1 do
bucksizet j]-budcsize[j]+subsize[j+1 J-subeizeCj]

endfor
(5.b) if (the size of bucKsizeEi] is notsatisfied around 80x

to 120x)
then we sly only the processor which is not satisfied

in coniticn in (2)
endfor
/• phase III: sort using sequential quicksort */

(6) for i=0 to p-1 do in parallel
start=z[i-l]+i
ena=z[i]
quicKsort(X, start, end)

endfor
⑶d

Fig. 1 pseudo code for PSMM

(a) original Mta(n=35)

16 2 17 24 33 28 30 1 0 27 9 25
_________ processor
|34|꺼 1이 7|21|피 히3디12]奇
_________ processor #2(12-23)_______
「时顽 i|14|기띄이 10[쩌詛20[5]

processor #3(24-35)
(b) Riase I (distribution)

Parallel Sorting Algorithm by Median Median 17

|3[끼 9|이기끼25|끼께꾀꿔
XO8"or

「기 8问끠끼!而미21|끠찌34]히

processor 92
「宥 4| 5| 巾。|1巾5|2이긔찌31|必|

processor f3
(c) Phase I(Quicksort)

「2「丨心15 I

(d) Phase IKaedian of each processor)

[이 1| 기 이 16|1기끼2다2기쬐끠3이
.#1 , n #2 H #3 」
I 7| 时비1기외诃이킈끼씨피3可

: 1 " 产. . 아~ 」
I 3| 4| 5| 6|10|k|띄2이끼끼하5기
1- *1 」L #2」L 偽」

(e) Phase 11 (divide part by Median value)

2 6 11 19 24

(f) Phase II(divide part by Median value)

I 6| 1| 2| 이에1기끼끠끼끼이3히
: #1」내卩 L Q 」
I 7| 이니I기1이에间이끼씨3이회
L n JL #2 JL 13 J
[히 4] 5「6|10|i4|15|2이끼찌3帀기
L #1 ■叫W」L松」L "」I偽 J

(g) Phase II(distribution)

42 외고0也1의믜의11의희坦
processor #1

!间1기间1이21恆）2이께피15|

財~j 破끼 2히 3이히药 |3对회쩌이 32]
processor #3

(h) Phase II(distribution)

Oi 3| 4| 5| 6| 기 이 이1■이 11[1 기 13
processor n

「丽可히項|1아；9[찌21|끠끼

processor ，2
云尽2히끼2히291이3】 I끼쐬34屋]

processor <3
(i) Phase IIKsequential Quicksort)

Fig. 2 PSMM example

HI. Complexity An치ysi오

In phase one and part of phase two of the

PSMM, all processors have roughly the same

amount of work to do. In phase two (some part)

and phase three, it is not obvious how evenly the

work is divided because this depends on how well

the data has been partitioned.

Theorem 1. The time complexity of Quicksort

requires O(n log n) in the average case. [1]

Theorem 2. The time complexity of binary­

search problem requires at most O(log n) [1].

Lemma 1. In phase three of the PSMM, each

processor merges less than 2w elements. [1]

Proof l.onsider any processor i. where i M * p.

There are three cases :

(1) In case of i = L All the data to be merged

by processor 1 must be M y】.Since there are

p2—p-p/2 elements which are>yb there

are at least (p2-p~p/2)w/p elements of X

which are)y^. In other words, there are at

most n— (p2 —p —p/2)w/p= (p + p/2)w/p<

2w elements of X which are M yb

(2) In case of i=p. All the data to be merged

by processor p must be >yp-b There are

(p-2)p + p/2 elements which are yp-!.

That is there are at least (p2 —p —p/2)w/p

elements of X which are M yb or there are

at most n-((p2-2p-p/2)w/p,2w elements

of X which are〉yp~】.

(3) In case of 1 <i <p. All data to be merged by

processor i must be〉- 】 and My. There

are (i —2)p + p/2 elements which are M yi-b

implying lb= ((i — 2)p + p/2)w/p elements

of X. On the other hand, there are (p —i)

p —p/2 elements which are〉. As w이 1,

there are w/p-1 elements that fall between

zi and the next highest element in the me­

dian-median. Since the size of X is n, there

are at most 2w-w/p+l<2w elements of X

for processor i to merge.

*

*

In conclusion No processor merges more than

2w = 2n/p elements in the last phase of the

PSMM. If pz does not divide n evenly, it is easy

to prove that no processor merges more than 2 n/

p elements.

What is the time complexity of PSMM? The

analysis for phase one is easy. (see Theorem 3)

Theorem 3. In the phase one of PSMM, the

time complexity is O(w log w).

Proof. The initial Quicksort takes O(w log w),

representing the time consumed by each processor

to sort w(= n/p) data using a sequential quicksort,

(see theorem 1)

18 The Journal of the Acoustical Society of Korea. Vol. 14. No. IE (1995)

Theorem 4. In the PSMM algorithm, the time

complexity is O(w log w + p2 log w).

Proof. The analysis is presented by phase.

(1) In step 2 of phase II, it takes 0(1).

(2) In step 3 of phase II, it requires 0(1 (p log

'w)) since step 4 of phase II requires 0(p

*

log w).

That is, steps 2 and 시 of phase II require O

(p2 log w).

(3) In step 5 of phase II, while (5.a) requires

0(p) and (5.b) requires 0(p log w) that

applies recursively each processor in the

worst case, it needs O(pp log w)=0(p2

logw).

*

(4) Step 6 of phase III requires 0(2w log w)

since the size of data to be merged by any

processor is always less than 2w.

The summation of the time of all three phases

gives a time complexity for the PSMM of 0(w

logw+ p2 log w + 2w log w), which is asymptotic

to 0(w log w) = 0((n/p) log n) when n〉=

The bound on the size of the data to be merged

in the PSMM is an important difference which

other partitioned-based sorts, such as the PSRS,

do have while Quickmerge and PSS do not.

Theoretically, the PSMM is optimal when n 藉 p2,

Fig. 3 Speedup of PSRS

Fig. 4 Dynamic Huffman Method

regardless of the distribution of the original data.

Two final points need to be addressed. First, the

algorithm and its analysis are based on there

being no duplicate elements in the list to be

sorted. Second, it is possible to use more than p

(p-1) elements in this method for choosing the

median.

IV. Experimental Results

To implement the PSMM on the MasPar using

randomly generated data, 32-bit integers with

various distributions were tested. No tests were

made for duplicate elements, of which there were

undoubtedly a few. The size of the array to be

sorted ranged from 0.1 million to 8 million

elements. Experiments were done using 2, 4, 8,

16, 32, 64 processors on the MasPar machine.

Each data point presented in this section was

obtained as the average of 20 program executions,

each on a different set of test data.

The experiement used the sequential Quicksort

time from the PSRS [2], which provides the

optimal sequential sort. It needs the speedups

which evaluate a new parallel algorithm for some

problem. Speedup is defined as the time required

Parallel Sorting Algorithm by Median-Median 19

to solve the problem; that is, the time elapsed

from the moment 나ic algorithm starts to the

moment it terminates l 1 i.

U is reasonable to assume that the time of

sorting n integers 니sing the improved Quicksort

on one PE is

tpe(n) = c n log n,

where c is a constant independant of size n.

Sequential times for lists of more than 0.2 million

elements were calculated using the formular [2]:

()_ n log n
p" 100,000 log 100,000 X tpe(100,000).

where 0.4 million n 8 million and tpe(100,000)

= 6.63 seconds. Note that if one used this formula

to compute ^(200,000), the result is almost a

perfect match with the corresponding experimental

time.

Ta비e 1- Sorting times of PSMM

n PE 1 2 4 8 16 32 64

100,000 6.63 3.48 2.04 1.48 1.04 1.05 1.44

200,000 14.00 7.25 3.86 2.48 1.84 1.45 1.68

400,000 19.71 15.19 7.91 4.86 2.62 2.08 1.88

800,000 62.62 - 20.28 9.62 4.99 3.11 2.45

1,000,000 79.56 一 2&53 12.18 6.28 3.14 2.89

2,000,000 167.56 一 一 一 12.86 6.34 4.56

4,000,000 350.17 - 一 一 一 13.17 8.21

8,000,000 732.28 - - 一 一 - 15.12

Ta비合 2. Sorting times of PSRS

n PE 1 2 4 亠 16 32 64

100,000 6.63 3.86 2.14 1.56 1.06 1.()9 1.66

200.000 14.00 8.08 4.20 2.74 1.71 1.43 1.83

400,000 19.71 16.77 8.60 5.58 3.13 2.11 2.20

800,000 62.62 - 21.51 10.67 5.84 3.50 2.86

1,000,000 79.56 - 29.88 13.13 6.97 4.38 3.12

2,000,000 167.56 一 - - 13.73 7.87 5.19

4,000,000 350.17 - 一 - - 14.83 8.70

8,000,000 732.28 一 一 - 一 - 16.49

I n PE : 2 - 4 ! 8 ■ 16 ! 32 i 64 |

Table 3. RDF As of PSMM

100,000 1.025 1.089 1.245 1.368 —

200,000 1.002 1.010 1.097 1 nro
i. 1.383

—

400,000 1.004 1.108 1.212 1.315 1.443

800,000 一 1.132 1.245 1.353 1.463 1.072

1.000.000

2,000,000

一 2.001 2.002 1.896 1.902 1.945

— - 一 1.578 1.998 2.005

4,000,000 一 一 — 2.065 2.076

8,000,000 - 一 - — 2.047

Table 4. RDFAs of PSMM

n PE 2 4 8 16 32 64

100,000 1.001 1.008 1.030 1.074 -

200,000 1,002 1.003 1.012 1.032 1.043 -

400,000 1.001 1.002 1.008 1.017 1.044 -

800,000 — 1.002 1.005 1.017 1.026 1.062

1,000,000 - 1.001 1.004 1.010 1.021 1.047

2,000,000 - - 1.009 1.016 1.045

4,000,000 — 一 - - 1.001 1.026

8.000.000 一 - 一 1.017

Table I shows the time required to sort using

the PSMM, and Fig. 3 plots the speedups

achieved. As the problem size increases, the task

granularity increases, offsetting the overheads of

the algorithms and resulting in better speedups.

Sorting 8 million items with 64 processors gave a

48.43-fold speedup.

For comparison purposes, the PMS, the

Quickmerge, the PSS, and the PSRS were

implemented. For brevity, only the PSRS results

are shown, as they are significantly better than

those of the PMS and the PSS. Table II shows

the time required to sort the elements using the

PSRS, and Fig. 4 plots the speedups achieved.

The RDFA (Relative Derivation of the size of

the largest partition From the Average size)

measures for the PSMM are shown in Table III

and the PSRS in Table IV. For the PSMM, the

data clearly shows that, as the number of processors

2() The Journal of the Acoustical Society of Korea, Vol. 14. No. IE (1995)

increases, so does the RDFA metric. However,

the PSRS is the claim that the data is evenly

partitioned : so, the RDFA is almost constant.

From the data obtained, a few observations can

be made on the performance of the PSMM.

(1) As the number of PEs increases, the speedups

are good. For example, when sorting 8 million

32-bit integers with 64 PEs, the PSMM has a

speedup of a 48.43-fold while PSRS has a 44.

4-fold speedup.

(2) Although Table IV shows that the PSRS

RDF As are consistently close to 1.0, the PSMM

RDF As are not close to 1.0, but are almost near

to 1.0.

In general, the speedup relationships of the

five algorithms implememted are as hallows :

PMS M Quickmerge M PSS M PSRS M PSMM.

The speedups of the PMS are found to be

rather poor. We cannot confirm Francis and

Masthieson's claim that the PMS has a linear

speedup [2]. The PSMM has been implemented

on the shared memory MasPar machine. A 48.

43-fold speedup was achieved sorting 8 million

data items on 64 processors. The sorting was

done in each processor's local memory, while the

global memory was used to communicate data.

V. Concl니sion

Long memory latency and the overhead of

scheduling and synchronization are two critical

factors that greatly affect the speedup of a parallel

algorithm on the present parallel machine [1, 2].

Parallel Sorting by Median-Median is intended to

minimize both. Experiments on the MasPar

machine (SIMD machine) make it clear that good

speedups for parallel sorting is indeed achievable.

The results reported here are quite encouraging,

considering that sorting is generally believed a

hard problem to parallelize. In the future, we

think about distributing data evenly in the pro­

cess of sorting.

Acknowledgements

Dr. Zheng supplies me with constructive

suggestions for improving this paper. And LSU

provided me with using MasPar machine.

References

1. Selim G. Akl, Parall이 Sorting Algorithms, aca­

demic press, 1985

2. Hanmao Shi and J. Schaeffer, “Parallel Sorting by

Regular Sampling," Journal of Distributed and Pa「

allel computing, pp. 361 - 372, 1992

3. Evan, D. J, and Yousif, N. Y., “The Parallel

Neighbor Sort for Shared Memory Multiprocessor/

IEEE trans. compu.t 37, 12(1988), pp. 1619-1626

4. Evans, D. J. and Yousif, N. Y., uAnalysis of the

Performance of the Parallel Quicksort Method," Bit

25(1985), pp. 106412

5. Huang, J. S. and Chow, Y. C., "Parallel Sorting and

Data Partitioning by Sampling," 7th int'l computer

software and application conference, 1983, pp.

627-631

6. Quinn, M. J., “Parallel Sorting Algorithms for

Tightly Coupled Multiprocessor," parallel comput.,

6(1988), pp. 349-357

7. Francis, R. S., and Mathieson, I. D., MA Benchmark

Parallel Sort for Shared Memory Multiprocessors,"

IEEE Trans. Comput., 37, 12 (1988)

8. Shim, J. H and Hong, S. S., "The Optimal Algor­

ithm with。니t a Memory Conflicts," Journal of the

Korea Information Science, Vol. 16, No. 1, pp.

28-37, Feb. 1989

9. Han, T. D., “The Design and Analysis of Parall이

Algorithm, Proceedings of Parallel Processing Sys­

tem, Vol 1, No. 1, Dec. 1989

21Parallel Sorting Algorithm by Median-Median

▲Yong Sik Min (Regular Member)

19811션 2월 : Dept, of Conputer Science, Kwangwoon

Univ.iB. SJ

1984년 2월 : Dept, of Computer Science, Kwangwoon

Umv.(M. S.)

1991 년 2월 : Dept, of Computer Science. Kwangwoon

Univ.(Ph. D)

1984 년 3월〜 1987 년 2월: Full-time lecturer, Song won

Junior College Dept, of Computer

Science

1987년 3월 : present: Associate Professor, Hoseo

Univ. Dept, of Computer Science

1993 년 8월 〜 1994 년 8월 : Visiting Professor, Louisiana

State Univ. Dept, of Computer Sci­

ence

