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A Parallel Algorithm for Merging Heaps on MasPar Machine
Yong Sk Mint

ABSTRACT

In this paper, we suggest a parallel algorithm to merge priority queues organized in two
heaps, Kheap and nheap of sizes k and n, correspondingly. Employing max(2—, [(m+1)/4])s
processors, this algorithm requires O(log(n/k) %log(n)) on an EREW-PRAM, where i is the
height of the heap and m is the summation of sizes n and k. Also, when we run it on the
MasPar machine, this method achieves a 33.934-fold speedup with 64 processors to merge 8
million data items which consist of two heaps of different sizes. So, our parallel algorithm’s EPU

is close to =1, which is considered as an optimal speedup ratio.

1. Introduction

Priority queues have traditionally been used for
applications such as branch-and-bound algorithm,
discrete—event simulation, shortest path algorithm,
multiprocessor scheduling and sorting. A priority
queue Is an abstract data structure which allows
deletion of the highest priority item and insertion
of new items[4, 8]. A heap, which is a complete
binary tree such that the priority of the item at
each node is higher than that of the items at iis
children, provides an optimal implementation of a
priority queue on uniprocessor computers—deletion
of the highest priority item and insertion of a
new item can each be accomplished on O(log n)
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time on an n-item heap.

Many have studied about parallel heaps as fol-
lows: Pinotti and Pucci[8] developed the n-
Bandwidth heap and this method employs O(n)
processors. However, it is optimal only on the
CREW-FRAM.

Das and Horng[4] have developed a parallel
heap without dedicated maintenance processors.
Also, Nao and Zhang[8] proposed the paralle] heap
running in O(n/p-+log n) time with p % O(n/log
(n)) processors on an EREW-PRAM.,

In this paper, we propose the parallel algorithm
of merging two heaps, nheap of size n and kheap
of size k and implement them on an exclusive-
read exclusive-write parallel random access ma-
chine(EREW-PRAM). Using max(2-', [(m+1)/
41)’s processors where i is the height of the heap



and m 15 the summation of sizes n and k, this al-
gorithm presented in this paper requires time

complexity of O(log(n/k) %xlog(n)). All the loga- -

rithms in this paper are assumed to be in base 2.
Also, when we ran on the MasPar, we achieved
a 33.934-fold speedup with 64 processors to use
8 million data which consist of two heaps of dif-
ferent. sizes.

2. Merging heaps in parallel

We define a perfect heap as a heap with 2-1
elements, in which all Jeaves are on the same
level, otherwise the heap is non-perfect. The
pheap is rooted at p, similar to the subheap root-
ed at p. Let the size(heap) be the number of ele-
ments it contains, and the height be defined as
Nog(size(heap))]. We introduce a function A(
heap) that returns the height of heap. We will
define slots of those leaf positions in nheap which
are to be filled by merging processes. We will
say that a node p covers a group of slots if all
slots are descendents of p.[7]

To evaluate a parallel algorithm for a given
problem, we use the speedup which is defined as
the time required to solve the problem ; that is,
the time elapsed from the moment the algorithm
starts to the moment it terminates. Clearly, the
larger the speedup, the better the paralle] algo
rithm[1].

For the sake of clarity, we will develop the
paralle]l algorithm by first showing how to merge
two prefect heaps of equal sizes, then how to
merge two heaps of different sizes.

(1) Merging two heaps of equal sizes

The process of merging two heaps of equal
sizes in parallel is the same as the sequential
method[7] which takes two heaps, nheap and
Kheap, each of size k(=n) and produces a new
heap with 2k elements. With a single processor,
it requires O(log k). At this time, two heaps are

perfect heaps. This pseudo algorithm is as fol-
lows :

procedure merge_equal_perfect_heaps
(ntheap, kheap)

Tmvoke simple_merge on 7heap and Mheap, taking
the last element of Kheap as the new root.
end merge_equal. perfect_heaps

procedure simple_merge(nheap, kheap, newroot)
copy nheap to temporary loction #
place newroot at root of nheap
copy t to lefison of nheap
copy kheap to rightson of nheap
sift-up(rheap)

end simple_merge

Lemma 1. Two perfect heaps of equal size k
can be merged with O(log(k)) comparisons and Q
(k) data movement.[7]

(2) Merging two heaps of unequal sizes

We will consider the simple case of mnserting a
heap of k elements, Keap, into a heap of n ele
ments, nheap. Without loss of generality, assume
that k <_n. We proceed with three phases. In the
first phase, determining the level of the root of
slots which has k by the merging process in
ntheap, we have to allocate the nodes of the level
to each processor. Second, the pheap, that is,
subheap of nheap which is allocated in the nheap
and the Kheap, that is, subheap of Kheap which is
allocated in the kheap are merged. At the time,
the new subheaps merged (pheap+kheap) must
be satisfied with the heap’s order. In the last
phase, the newly merged heap is comnected to
nheap which exists in the shared memory and
construct the heap condition about nheap.

2.1 leve-find dgorithm

In the first phase of the merging process, in
order to determine the location p's node in each
processor, we use the level of nheap. Then we
classify nheap as either a perfect heap or a
nonperfect heap.
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(a) perfect heap

In the process of selecting the location p, the
heap has a characteristic to fill out from the
leftmost node of nheap in order w fill out the
nodes of kheap since nheap is a perfect heap. In
this perfect heap, we have twc steps in finding
the location p. In the first step, we must deter
mine the number of processors allocated In order
to find the location p In each processor. However,
the number of processors is equal to the number
of leaves in Khieap. In the second step, we select
the locations to determine the number of proces
sors. Since nheap is a perfect heap, the first pro-
cessor is located to the leftmost leaf or subheap
of nheap. Also, we store the number of slots
which are filled In each processor. In order to
store the number of slot, we use the global varia-
ble S(PE(7)), where 1=1, 2, ---, 27!, and [ is
the number of the level in #eap in shared memo-
ry. The process of finding p is as follows ;

procedure parallel-perfect-level-find(nhean, kheap, p)
/% pithe number of processor,
PE(7):1th processor(l = 7 < p),
S(PE(7)):the number of slots which 7th proces
sor has %/
(1) /# determine the number of processors %/
p=2(hlnhcnw—l) .
(2) /% determine the location of PE(7) m nhemp %/
for all #(1 < { < p) do in parallel
i=2(h(nhmﬂll)—l)+i_1
PE(7) =the 7th location of mheap
alifor
(3) /# determine the number of slots which PE(7)
has %/
for all {(1 < { < p) do In parallel
S(PE(7))=the number of slots in PE(7)
allfor
end

Theorem 1. In procedure parallel-perfect-level-
find, it runs O(1).
proof. Since it is very trivial, we omit.

(b) nonperfect heap
If nheap is a nonperfect heap, there are three
necessary steps to select the location p. In the

first stcp, we have to determine the number of
processors to allocate the location p to each pro-
cessor. In the second step, we determine the loca
tion of the determined processor. Then, using the
difference of the height between rheap(h(nheap))
and Kheap (h{kheap)), we find the location which
is the root of the subtree that is not a first com-
plete binary tree from each subtree of the level
determined. Then, if the difference between the
size of the subtree determined and the slot is not
less than 1, we find the lower subtree and select
the nonperfect heap which has the difference of
1. We allocate the selected location to the first
[Processor.

In the second step, we allocate the next loca-
tion determined to the next processor and so on.
Then, the number of processors allocated is equal
to the number of p determined in the first step.
The number of slots allocated in each processor
is set to S(PE(1)) such as in a perfect heap.
The following pseudo algorithm is the process of
selecting the location p.

procedure parallel-nonperfect-level-find(zheap,
kheap, p) begin
{1) /% determine the number of processors */
p= ZRam—1
(2) /% determine the location of the first processor %/
(22) level=h(nheap)-h{kheap)-1
H(level< () then level=0
p/=2¥ /% calculate the current level #*/
(2.b) if(nheap is not a leaf)
(a) if(the subheap of Pl is a perfect heap)
then pl=pl+1;go to step (2b)
(b) LD=size(pl's subheap)—size(pls slot)
(c) H(LD=1) then go to step(2.c)
(d) if(the subheap of 2:#pl is perfect)
then pl=2%pl+1 else pl=2%pl
(e) go to step (2b)
(2.c) PE(1)=the location pl of nheap
S(PE(1))=the number of slots in PE(1)
(8) /% allocate location of 2nd processor to pth
node #%/
for all #(2 < 7 < p) do in parallel
PE(7)=pl of nheap+(7-1)’s location
S(PE(7))=the number of slots in PE(7)
allfor
end



Theorem 2. The procedure to find the location
p requires O(2¥")s processors.
proof. To determine the number of processars,
we execute the instruction such ag p=2Mkmd=l 1
step 1 of the procedure parallel-nonperfect-level-
find. Then the height of kheap corresponds to
that level. Therefore, 24D mean 209 which
is the maximum number of nodes on one level in
Fheap.

Theorem 3. To execute to find the location p
requires O(log(n/k)).
proof. The step 1 of the procedure parallel-
nonperfect-level-find needs O(1), and so does In
step 3. In step 2, (2.) requires O(1) which is the
difference between the height of nheap and Kheap.
Step(2.b) determines the location p of root node of
slots in nheap. The process to determine the path
from the root of nheap to location p is log(n)-log
(k) =log(n/k). (2.c) requires O(1). Therefore, this
procedure requires O(log(n/k)).

22 mergng dgorithm

Using the processor allocated in the above sec-
tion, we suggest the merging method between ¥
heap which is the subheap of Kieap and pheap,
the subheap of pheap.

(a) the allocation method of subheap n PE(2)
We suggested the method to find the root of
subheap in rheap, So, using this method, we exe-
cute the following instructions in order to move
in to the local memory.

for all PE(i) (1 < i< p) do in parallel
repeat,
move the subheap which is constructed with
nheap
(the location of PE(7)) to the pheap of each
processor
until(zheap’s last node)
allfor

To select the Kheap which is merged to pheap,
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we have to move kheap which is in the shared
memory to the local memory of each processor
the number of slots that are assigned to the pro-
cessor. To execute this, we point out the location
of kheap which has the 7th location indicated by
the tota] number of slots already assigned to the
previous processors. Then, from the location of %
heap determined, we created the merged Kheap
which constructs the local memory of each pro-
cessor the number of slots that are assigned to
the processor. The following pseudo algorithm de-
scribes the above things.

procedure selection— kheap-point(kheap, p)
begin
int X[1:2]
for all PE(:)(1 < /< p) do in parallel
(1) /% determine the location in the khesp which
each processor has %/ .
(la) for all (1 < 7 < p) do in parallel
sum=0
(Lb) for j=1 to (#~1) do
sum=sum+5[}-1]
endfor
X[=X[i]+sum
alfor

(2) /% move the number of slots determined from
the kheap */
(22a) for all (1 < i< p) do in parallel
(2.b) for j=X[7] to (X[{]+8[7]-1) do
move the ih location of Aheap to proper PE(2)
endfor
allfor
end

Theorem 4. In procedure selection-kheap-point,
it runs O(max(p the number of slots each pro-
cessor has)).

proof. In procedure selection-kheap-point, (1.
a) requires O(1) and (1b) runs O(p) since it
runs p-1 times using p processors. So, the first
step runs O(p). (2.a) requires O(1) and (2b) re-
quires O(the number of slots which one processor
has) since it occurs as the number of slot as the
proper location of kheap. As a result, it runs O
(max(p, the number of slots which one processor
has)).
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Next, we consider to merge pheap and Kheap.
The following pseudo algorithm describes this :

procedure parallel-union-heaps(pheap, Khamp, newheap)
begin
for all /(1 <7< p) do in parallel
(1) if (size{pheap) >> size(Kheap))
then newroot= {last elemeri n pheap}
change the location of pheap and Kheap
else newroot={last element in Kheap}
(2) distribute pheap to temporary location
(3) place newroot at pt
(4) copy t to leftson of newheap(pt)
(5) copy Kheap to rightson of newheap(pt)
(6) sift-up(newheap)
allfor
end

This procedure constructs a heap as we t.reat
the last node of the higher heap among two
heaps, that is, pheap and Kheap as the root of
newheap. Since newheap must satisfy the condi-
tion of heap, we use the sift-up function. We
acquire the resultant heap while newheap moves
the proper location of nheap which is located in
shared memory. But, if the root of newheap is
changed, mheap doesm't satisfy the heap—ordered
condition. To solve this problem in this paper, we
use the local variable co. If the root of Fheop is
changed after merging the pheap and the Fheap,
we set the value of cv as 1. Otherwise, the value
of cv is 0. Then to make the heap-ordered, we
use the sift-up function and we repeat this meth-
od until all ¢vs for each processor is equal to (.

procedure construct-twoheaps(nheap)
begin
(1) n=log size(nheap after merging)
(2) for /=# down to 1 do
kzzl—l
5=0
(3) m=min(size(nheap after merging)/2, 2% &-1)
{4) for all j{£< j< m) do in parallel
p=2%]
if(p< size(nheap after merging) ) and
nheap(p) > nheap(p+1)) then p=p+1
if (rheap(p) < nheap(7))
then exchange(rheap(p), nheap(;))
lock s

s=s+1
unlock s
allfor
(5) while(s< (n-k+1))do
wait
endwhile
endfor
(6 for all 7(1 < /< p) do in parallel
sift-up(PE(4)’s subheap)
if (the root node 1s exchanged)
then co=1 else cv=0
alifor
{(7) for all v in PE({)=0 do in parallel
return{nheap)
allfor
allfor
end

In order to calculate the number of processors,
we need to merge two heaps. The method is de-
scribed below.

Theorem 5. In procedure construct-twoheaps,
it requires [(m-+1)/47 processors.
proof. The number of nheap after merge is
m{=n-+k) and the height is 1(=h(nheap)+1).
The maximum rumber of nodes in this heap 15 2
“'1=2"1 < m. The maximum number of proces-
sors needed to process in parallel is 297" since
the mumber of nodes n level -1 requires them.
So, it is 2972 < [(m+1)/4). Therefore we need
[{m+1)/47 processors.

Theorem 6. In procedure construct-twoheaps,
its time complexity is O(log(n/k) *klog(n)).
proof. In procedure construct-twoheaps, step
(4) requires O(1) and steps (2) through (5) re-
quire Q(log n). Further, since the step (6) re
quires log(n) as sift-up function, it runs O(log(p
+k’)) because the subheap is pheap and Kheap.
Steps (1) through (6) need the value of cv= 0,
that 15, it doest change the root node of the
subheap in all processors. This indicates that
nodes from the root of mheap to location p must
be changed. This time complexity is O(log(n/k))
as we see in the theorem 3. Therefore, it runs O

(log(n/k)).



3. Experimental Results

The MasPar MP-1 system, which developed at
MasPar Computer Co. in 1990, is a SIMD-SM
machine with 8K processor. Fach processor has a
local memory of 64K bytes. The control unit for
these PEs(Parallel Processor) is called ACU
(Arithmetic Contral Unit). The ACU and the
PEs together are known as the DPU(Data Paral-
lel Unit). It is attached to a DEC 5000(known
as the Front End) to allow user interface.

All compilations is carried out on the Front End.
The DPU processors communicate with each other
using two mechanism : X—net and Router. This
mechanism is supplied by MPL(MasPar Program-
ming Language) which is an extension to the pro-
gramming language C. The MasPar system pro
vides a transparent control mechanism that
automatically schedules parallel tasks on PEs, opti
mizes the use of hardware resources and manages
all data motion.[9]

Qur algorithm was implemented in MPL to run
ot a 64-processor MasPar system. Also, to imple
ment this algorithm on the MasPar, we tested ran
domly generated 32-bits integers with various dis-
tributions. No tests were made for duplicate ele-
ments, of which there were undoubtedly a few.
The size of array to be merged ranged from 0.1
milion to 8 million elements. Experiments were
done using 2, 4, 8, 16, 32 and 64 processors on
the MasPar machine. Fach data points presented
in this section was obtained as the average of 20
program executions, each on a different set of test
data which has a nonperfect heap.

(Table 1) shows the time required to merge,
and (Fig. 1) plots the speedups achieved. As the
problem size increases, task granularity increases.
So, offsetting the overheads of the algorithms
results in better speedup. Merging two heaps of
'8 million with 64 processors yields a 33.934—fold
speedup over the use of one processor. This
method was implémented in each processor’s local

memory. (Global memory was used to communi-

cate the code.

(Table 1) Time to merge hesps N pardlel(unit: second)

n PE 1 2 4 8 16 32 64
100000| 6384) 4711| 2732| 1.758| 09855 0521| 1457
200,000] 12495) 7498| 4855| 3251( 2076 | 1.084| 1843
400000 26604| 14955] 8136 5478 4043 | 3093| 3102
800,000| 5812 | 20034| 1742 | 9045| 689 3902| 3513

1,000000] 7634 1999 | 1467 | 9761 7231 4543
2,000,000| 152.85 29995| 18359| 12885| 8125
4,000000| 31251 19893 | 11.531
8,000,000| 68386 20153
64
0100000
- 400000
- SOEXG00
48 8 [ X0
= 2o

(Fg. 1) Speedup in heaps of dfferent sizes

4. Conclusion

In this paper, we suggested the parallel algo-
rithm to merge two heaps on an EREW-FRAM
and implemented them on the MasPar Machine.
As a result, we showed that the algorithm re-
quires time complexity of O(log(n/k)*log(n))
and space complexity of O(n+k+the number of
processor# (k'+p)). The detailed complexities are
shown in (Table 2). Also, when we ran the algo-
rithm on the MasPar machine, we achieved a 33.
934-fold speedup using 64 processors to merge 8
million data, which consist of two heaps of differ-
ent sizes.



560 BIEER MR =2A] H2H H4S(9%5. T)

In (Table 2, if the size of two heaps are
equal and two heaps are perfect heaps, we use
only one procéssor since its time complexity 15 O
(log(k)) and is better than using two or more
processors. In this method, we found the speedup
is S=T(1)(n)/T(k)(n)=(log(log(n/k)) *log(k))
/(1/p) % (og(n/k) *log(n) % p)=1. This method
improves the performance of merging two heaps
because EPU is almost equal to 1.

{Table 2) The resut of mergng two heaps in parald

number of space time

Processors complexity complexity
perfect heap I
el <o) 1 2k O(log(k)) :
perfect heap 1 oy | metkonumber gy
(different size) (m+1)/4) of processor *xlog(n) |
& m{m heap * (k'+D) = '
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