• Title/Summary/Keyword: speeded up robust feature

Search Result 58, Processing Time 0.022 seconds

A Feature-Based Robust Watermarking Scheme Using Circular Invariant Regions

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyung
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.591-600
    • /
    • 2013
  • This paper addresses a feature-based robust watermarking scheme for digital images using a local invariant features of SURF (Speeded-Up Robust Feature) descriptor. In general, the feature invariance is exploited to achieve robustness in watermarking schemes, but the leakage of information about hidden watermarks from publicly known locations and sizes of features are not considered carefully in security perspective. We propose embedding and detection methods where the watermark is bound with circular areas and inserted into extracted circular feature regions. These methods enhance the robustness since the circular watermark is inserted into the selected non-overlapping feature regions instead of entire image contents. The evaluation results for repeatability measures of SURF descriptor and robustness measures present the proposed scheme can tolerate various attacks, including signal processing and geometric distortions.

Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA (PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선)

  • Kim, Onecue;Kang, Dong-Joong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.820-828
    • /
    • 2013
  • Extracting unique features from an image is a fundamental issue when making panorama images, acquiring stereo images, recognizing objects and analyzing images. Generally, the task to compare features to other images requires much computing time because some features are formed as a vector which has many elements. In this paper, we present a method that compares features after reducing the feature dimension extracted from an image using PCA(principal component analysis) and sorting the features in a linked list. SURF(speeded up robust features) is used to describe image features. When the dimension reduction method is applied, we can reduce the computing time without decreasing the matching accuracy. The proposed method is proved to be fast and robust in experiments.

Efficient Detection of Direction Indicators on Road Surfaces in Car Black-Box for Supporting Safe Driving

  • Kim, Jongbae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • This paper proposes an efficient method to detect direction indicators on road surfaces to support drivers in driving safely using the Simulink model. In the proposed method, the ROIs are detected using the detection method of maximally stable extremal regions (MSER), and the road indicator regions are detected using the speeded up robust features (SURF) matching method for the corresponding point matching of the detected ROIs and the road indicator templates. Experiments on various road satiations show that the processing time of about 0.32 sec per frame was required, and a detection rate of 91% was achieved.

Laser Image SLAM based on Image Matching for Navigation of a Mobile Robot (이동 로봇 주행을 위한 이미지 매칭에 기반한 레이저 영상 SLAM)

  • Choi, Yun Won;Kim, Kyung Dong;Choi, Jung Won;Lee, Suk Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This paper proposes an enhanced Simultaneous Localization and Mapping (SLAM) algorithm based on matching laser image and Extended Kalman Filter (EKF). In general, laser information is one of the most efficient data for localization of mobile robots and is more accurate than encoder data. For localization of a mobile robot, moving distance information of a robot is often obtained by encoders and distance information from the robot to landmarks is estimated by various sensors. Though encoder has high resolution, it is difficult to estimate current position of a robot precisely because of encoder error caused by slip and backlash of wheels. In this paper, the position and angle of the robot are estimated by comparing laser images obtained from laser scanner with high accuracy. In addition, Speeded Up Robust Features (SURF) is used for extracting feature points at previous laser image and current laser image by comparing feature points. As a result, the moving distance and heading angle are obtained based on information of available points. The experimental results using the proposed laser slam algorithm show effectiveness for the SLAM of robot.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images (적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법)

  • Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

Error Correction Scheme in Location-based AR System Using Smartphone (스마트폰을 이용한 위치정보기반 AR 시스템에서의 부정합 현상 최소화를 위한 기법)

  • Lee, Ju-Yong;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.179-187
    • /
    • 2015
  • Spread of smartphone creates various contents. Among many contents, AR application using Location Based Service(LBS) is needed widely. In this paper, we propose error correction algorithm for location-based Augmented Reality(AR) system using computer vision technology in android environment. This method that detects the early features with SURF(Speeded Up Robust Features) algorithm to minimize the mismatch and to reduce the operations, and tracks the detected, and applies it in mobile environment. We use the GPS data to retrieve the location information, and use the gyro sensor and G-sensor to get the pose estimation and direction information. However, the cumulative errors of location information cause the mismatch that and an object is not fixed, and we can not accept it the complete AR technology. Because AR needs many operations, implementation in mobile environment has many difficulties. The proposed approach minimizes the performance degradation in mobile environments, and are relatively simple to implement, and a variety of existing systems can be useful in a mobile environment.

View invariant image matching using SURF (SURF(speed up robust feature)를 이용한 시점변화에 강인한 영상 매칭)

  • Son, Jong-In;Kang, Minsung;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.222-225
    • /
    • 2011
  • 영상 매칭은 컴퓨터 비전에서 중요한 기초 기술 중에 하나이다. 하지만 스케일, 회전, 조명, 시점변화에 강인한 대응점을 찾는 것은 쉬운 작업이 아니다. 이러한 문제점을 보안하기 위해서 스케일 불변 특징 변환(Scale Invariant Feature Transform) 고속의 강인한 특징 추출(Speeded up robust features) 알고리즘등에 제안되었지만, 시점 변화에 있어서 취약한 문제점을 나타냈다. 본 논문에서는 이런 문제점을 해결하기 위해서 시점 변화에 강인한 알고리즘을 제안하였다. 시점 변화에 강인한 영상매칭을 위해서 원본 영상과 질의 영상간 유사도 높은 특징점들의 호모그래피 변환을 이용해서 질의 영상을 원본 영상과 유사하게 보정한 뒤에 매칭을 통해서 시점 변화에 강인한 알고리즘을 구현하였다. 시점이 변화된 여러 영상을 통해서 기존 SIFT,SURF와 성능과 수행 시간을 비교 함으로서, 본 논문에서 제안한 알고리즘의 우수성을 입증 하였다.

  • PDF

Place Recognition Method Using Quad Vocabulary Tree (쿼드 어휘 트리를 이용한 장소 인식 방법)

  • Park, Seoyeong;Hong, Hyunki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.569-577
    • /
    • 2016
  • Place recognition for LBS (Location Based Service) has been one of the important techniques for user-oriented service. FLANN (Fast Library for performing Approximate Nearest Neighbor) of place recognition with image features is fast, but it is affected much by environmental condition such as occlusions. This paper presents a place recognition method using quad vocabulary tree with SURF (Speeded Up Robust Features). In learning stage, an image is represented with spatial pyramid of three levels and vocabulary trees of their sub-regions are constructed. Query image is matched with the learned vocabulary trees in each level. The proposed method measures homography error of the matched features. By considering the number of inliers in sub-region, we can improve place recognition performance.

GPU based Fast Recognition of Artificial Landmark for Mobile Robot (주행로봇을 위한 GPU 기반의 고속 인공표식 인식)

  • Kwon, Oh-Sung;Kim, Young-Kyun;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.688-693
    • /
    • 2010
  • Vision based object recognition in mobile robots has many issues for image analysis problems with neighboring elements in dynamic environments. SURF(Speeded Up Robust Features) is the local feature extraction method of the image and its performance is constant even if disturbances, such as lighting, scale change and rotation, exist. However, it has a difficulty of real-time processing caused by representation of high dimensional vectors. To solve th problem, execution of SURF in GPU(Graphics Processing Unit) is proposed and implemented using CUDA of NVIDIA. Comparisons of recognition rates and processing time for SURF between CPU and GPU by variation of robot velocity and image sizes is experimented.