• Title/Summary/Keyword: speed estimation error

Search Result 382, Processing Time 0.028 seconds

An Approach to a Speed Estimation Method to Remove Speed Sensor of Underwater Robot's AC Drive Systems (수중로봇용 AC구동시스템의 속도센서 제거를 위한 속도추정법 연구)

  • 전봉환;임용곤;이판묵
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.371-376
    • /
    • 1998
  • This paper describes an approach to a speed estimation method to remove speed sensor of underwater robot's AC drive systems. AC motors have been widely used in the field of underwater robot's manipulator or propulsion system. Most of these AC motors for underwater use have usually filled oil to compensate the high pressure in deep-sea operation, where a resolver is adopted to feed back the speed of rotor But this kind of speed feedback devices gives rise to some defects arising from their mechanical complexity and numerous signal lines; a resolver needs 6 or 7 signal lines for proper operation. This paper presents a speed estimation method to improve these problems of induction motor, which is adopted as a prototype of AC motor. The proposed speed estimation method is based on the RFO(rotor flux orientation) vector control method of voltage-fed AC drives. Using the controller of voltage-fed AC drives, it is unnecessary to measure the voltage for the estimation of rotor speed, which reduces the effects of measurement error Numerical simulation is carried out to investigate the validity of the method and the effects of rotors resistance variation.

  • PDF

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

Speed Error Compensation By Rotor Resistance Estimation in Sensor-less Vector Control (속도센서없는 벡터제어시 회전자저항 추정에 의한 속도오차보상)

  • Kim, Joohn-Sheok;Mok, Hyung-Soo;Kim, Heui-Wook;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.326-331
    • /
    • 1990
  • In the vector-controlled induction machine drive, mechanical sensors restrict the wide applications of high performance AC drives. So in resent years, many papers have been presented which doesn't need mechanical sensors, named by sensorless vector control. But sensorless control has a few serious problem, one of which Is poor speed estimation in case of incorrect rotor resistance (Rr) information. This paper describes the stator flux orientation speed control strategy with the speed estimation algorithm. and the method of adapting Rr change due to thermal heating. By proposed method. We can acquire precise speed estimation and higher performance.

  • PDF

Speed Estimation of Sensorless Vector Controlled Induction Motor Using The Extended Kalman Filter (확장된 칼만필터를 이용한 센서없는 유도전동기의 속도추정)

  • 최연옥;정병호;조금배;백형래;신사현
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.544-548
    • /
    • 1999
  • Using Observer, on the sensorless vector control system is a novel techniques for modern induction motor control. In this paper, a speed estimation algorithm of an induction motor using an extended kalman filter was proposed. Extended kalman filter can solve the problem, that have steady state error of estimated speed in flux and slip estimation method. The extended Kalman filter is employed to identify the speed of an induction motor and rotor flux based on the measured quantities such as stator current and DC link voltage. In order to confirming above proposal, computer simulation carried out using Matlab Simulink and show the effectiveness of the control drives for induction motor speed estimation.

  • PDF

The Control of Switched Reluctance Motors Using Binary Observer without Speed and Position Sensors (이원 관측기를 이용한 SRM의 속도 및 위치 센서없는 제어)

  • Sin, Jae-Hwa;Yang, Lee-U;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.457-466
    • /
    • 2002
  • The speed and position control of SRM(Switched Reluctance Motor) needs the encoder or resolver to obtain the rotor position information. These position sensors can be affected by the EMI, dusty, and high temperature surroundings. Therefore the speed and position sensorless control has been studied widely In this paper, the binary observer of the SRM which has two feedback compensation loops to control the speed of SRM is proposed. One loop reduces the estimation error like the sliding mode observer, and the other removes the estimation error chattering occurred in the sliding mode observer. This observer is constructed on the basis of variable structure control theory and has the inertial term to exclude the chattering. This method has a good estimation performance in spite of nonlinear modeling of SRM. The advantages of the proposed method are verified experimentally.

A Sensorless Vector Control System for Induction Motors Using Stator Current Difference

  • Park, Chul-Woo;Choi, Byeong-Tae;Kwon, Woo-Hyen;Ku, Bon-Ho;Youn, Kyung-Sub
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.139.4-139
    • /
    • 2001
  • The thesis propose the sensorless vector control method that estimates the rotor speed using stator current. The estimated speed is used as feedback in a vector control system. The conventional MRAS structure has a problem the error output is decreasing as estimated speed error is increasing and the estimation performance is not robust when mutual inductance has been changed. In the proposed method, error output is proportional to estimated speed error. The described technique is less complex, robust to variations of mutual inductance. This new method can achieve much wider bandwidth speed control than that of the conventional MRAS structure.

  • PDF

Sensorless Speed Control of PMSM Based on Novel Adaptive Control with Compensated Parameters (새로운 보상 파라미터를 가지는 적응제어 기반 영구자석 동기전동기의 센서리스 속도제어)

  • Nam, Kee-Hyun;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.956-962
    • /
    • 2013
  • Recently, sensorless controls, which eliminate position and speed sensor in a permanent magnet synchronous motor drive, have been much studied. Most sensorless control algorithms are based on the back-EMF and speed estimations which are obtained from the voltage equations. Therefore, the sensorless control performance is largely affected by the parameter errors of a motor. This paper investigates a novel adaptive control with the parameter error compensation for the speed sensorless control of a permanent magnet synchronous motor. The proposed parameter estimation is obtained from the d-axis current error between the real and estimated currents. The proposed algorithm is verified through the simulation and experimentation.

Speed Sensorless Vector Control of Induction Machine in the Field Weakening Region (약계자영역에서 유도전동기의 속도센서리스 벡터제어)

  • Sin, Myeong-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.508-512
    • /
    • 2001
  • This paper investigates the problem of the speed estimation of conventional speed sensorless stator flux-oriented induction machine drive in the field weakening region and proposes a new speed estimation scheme to estimate speed exactly in transients in the field weakening region. The error included in the estimated rotor speed is removed by not a low pass filter but Kalman filter so that exact speed estimation in transients is achieved.

  • PDF

Effect of SNR Estimation Error on MMSE-DFE in High-speed Binary CDMA System (고속 Binary CDMA 시스템에서 MMSE-DFE에 대한 SNR 추정 오차의 영향)

  • Kang, Sung-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.735-741
    • /
    • 2011
  • In this paper, we have analyzed the effect of SNR estimation error on the BER performance of MMSE-DFE in high-speed binary CDMA system. Since MMSE equalization algorithm requires the SNR value of input signal, it should be estimated using CAZAC sequence in preamble. However, when AWGN and ISI exist simultaneously, it is impossible to estimate the exact SNR value of input signal and thereby equalizer's performance may be deteriorated. The simulation results can be used as a guideline for selection of SNR estimation algorithm for MMSE-DFE design.

A Sensorless Control of IPMSM using the Improving Instantaneous Reactive Power Compensator (개선된 순시무효전력 보상기를 이용한 IPMSM의 센서없는 속도제어)

  • La, Jae Du
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1303-1307
    • /
    • 2018
  • A improving sensorless compensator for the IPMSM(Interior Permanent Magnet Synchronous Motor) drive system is proposed. Generally, the motor drive system is required the robust parameter variation and disturbance. The speed estimation methods of the conventional IRP(Instantaneous Reactive Power) compensator is improved by the speed estimation techniques of the current model observer with the proposed instantaneous reactive power compensator. Performance evaluations of the novel speed error compensator and sensorless control system are carried out by the experiments.