• 제목/요약/키워드: speech recognition systems

검색결과 359건 처리시간 0.032초

잡음음성인식을 위한 음성개선 방식들의 성능 비교 (Performance Comparison of the Speech Enhancement Methods for Noisy Speech Recognition)

  • 정용주
    • 말소리와 음성과학
    • /
    • 제1권2호
    • /
    • pp.9-14
    • /
    • 2009
  • Speech enhancement methods can be generally classified into a few categories and they have been usually compared with each other in terms of speech quality. For the successful use of speech enhancement methods in speech recognition systems, performance comparisons in terms of speech recognition accuracy are necessary. In this paper, we compared the speech recognition performance of some of the representative speech enhancement algorithms which are popularly cited in the literature and used widely. We also compared the performance of speech enhancement methods with other noise robust speech recognition methods like PMC to verify the usefulness of speech enhancement approaches in noise robust speech recognition systems.

  • PDF

Applying Mobile Agent for Internet-based Distributed Speech Recognition

  • Saaim, Emrul Hamide Md;Alias, Mohamad Ashari;Ahmad, Abdul Manan;Ahmad, Jamal Nasir
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.134-138
    • /
    • 2005
  • There are several application have been developed on internet-based speech recognition. Internet-based speech recognition is a distributed application and there were various techniques and methods have been using for that purposed. Currently, client-server paradigm was one of the popular technique that been using for client-server communication in web application. However, there is a new paradigm with the same purpose: mobile agent technology. Mobile agent technology has several advantages working on distributed internet-based system. This paper presents, applying mobile agent technology in internet-based speech recognition which based on client-server processing architecture.

  • PDF

Review And Challenges In Speech Recognition (ICCAS 2005)

  • Ahmed, M.Masroor;Ahmed, Abdul Manan Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1705-1709
    • /
    • 2005
  • This paper covers review and challenges in the area of speech recognition by taking into account different classes of recognition mode. The recognition mode can be either speaker independent or speaker dependant. Size of the vocabulary and the input mode are two crucial factors for a speech recognizer. The input mode refers to continuous or isolated speech recognition system and the vocabulary size can be small less than hundred words or large less than few thousands words. This varies according to system design and objectives.[2]. The organization of the paper is: first it covers various fundamental methods of speech recognition, then it takes into account various deficiencies in the existing systems and finally it discloses the various probable application areas.

  • PDF

청각 및 시가 정보를 이용한 강인한 음성 인식 시스템의 구현 (Constructing a Noise-Robust Speech Recognition System using Acoustic and Visual Information)

  • 이종석;박철훈
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.719-725
    • /
    • 2007
  • In this paper, we present an audio-visual speech recognition system for noise-robust human-computer interaction. Unlike usual speech recognition systems, our system utilizes the visual signal containing speakers' lip movements along with the acoustic signal to obtain robust speech recognition performance against environmental noise. The procedures of acoustic speech processing, visual speech processing, and audio-visual integration are described in detail. Experimental results demonstrate the constructed system significantly enhances the recognition performance in noisy circumstances compared to acoustic-only recognition by using the complementary nature of the two signals.

Selecting Good Speech Features for Recognition

  • Lee, Young-Jik;Hwang, Kyu-Woong
    • ETRI Journal
    • /
    • 제18권1호
    • /
    • pp.29-41
    • /
    • 1996
  • This paper describes a method to select a suitable feature for speech recognition using information theoretic measure. Conventional speech recognition systems heuristically choose a portion of frequency components, cepstrum, mel-cepstrum, energy, and their time differences of speech waveforms as their speech features. However, these systems never have good performance if the selected features are not suitable for speech recognition. Since the recognition rate is the only performance measure of speech recognition system, it is hard to judge how suitable the selected feature is. To solve this problem, it is essential to analyze the feature itself, and measure how good the feature itself is. Good speech features should contain all of the class-related information and as small amount of the class-irrelevant variation as possible. In this paper, we suggest a method to measure the class-related information and the amount of the class-irrelevant variation based on the Shannon's information theory. Using this method, we compare the mel-scaled FFT, cepstrum, mel-cepstrum, and wavelet features of the TIMIT speech data. The result shows that, among these features, the mel-scaled FFT is the best feature for speech recognition based on the proposed measure.

  • PDF

AI-based language tutoring systems with end-to-end automatic speech recognition and proficiency evaluation

  • Byung Ok Kang;Hyung-Bae Jeon;Yun Kyung Lee
    • ETRI Journal
    • /
    • 제46권1호
    • /
    • pp.48-58
    • /
    • 2024
  • This paper presents the development of language tutoring systems for nonnative speakers by leveraging advanced end-to-end automatic speech recognition (ASR) and proficiency evaluation. Given the frequent errors in non-native speech, high-performance spontaneous speech recognition must be applied. Our systems accurately evaluate pronunciation and speaking fluency and provide feedback on errors by relying on precise transcriptions. End-to-end ASR is implemented and enhanced by using diverse non-native speaker speech data for model training. For performance enhancement, we combine semisupervised and transfer learning techniques using labeled and unlabeled speech data. Automatic proficiency evaluation is performed by a model trained to maximize the statistical correlation between the fluency score manually determined by a human expert and a calculated fluency score. We developed an English tutoring system for Korean elementary students called EBS AI Peng-Talk and a Korean tutoring system for foreigners called KSI Korean AI Tutor. Both systems were deployed by South Korean government agencies.

강인한 음성 인식 시스템을 사용한 감정 인식 (Emotion Recognition using Robust Speech Recognition System)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.586-591
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

An Experimental Study on Barging-In Effects for Speech Recognition Using Three Telephone Interface Boards

  • Park, Sung-Joon;Kim, Ho-Kyoung;Koo, Myoung-Wan
    • 음성과학
    • /
    • 제8권1호
    • /
    • pp.159-165
    • /
    • 2001
  • In this paper, we make an experiment on speech recognition systems with barging-in and non-barging-in utterances. Barging-in capability, with which we can say voice commands while voice announcement is coming out, is one of the important elements for practical speech recognition systems. Barging-in capability can be realized by echo cancellation techniques based on the LMS (least-mean-square) algorithm. We use three kinds of telephone interface boards with barging-in capability, which are respectively made by Dialogic Company, Natural MicroSystems Company and Korea Telecom. Speech database was made using these three kinds of boards. We make a comparative recognition experiment with this speech database.

  • PDF

Improved Bimodal Speech Recognition Study Based on Product Hidden Markov Model

  • Xi, Su Mei;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.164-170
    • /
    • 2013
  • Recent years have been higher demands for automatic speech recognition (ASR) systems that are able to operate robustly in an acoustically noisy environment. This paper proposes an improved product hidden markov model (HMM) used for bimodal speech recognition. A two-dimensional training model is built based on dependently trained audio-HMM and visual-HMM, reflecting the asynchronous characteristics of the audio and video streams. A weight coefficient is introduced to adjust the weight of the video and audio streams automatically according to differences in the noise environment. Experimental results show that compared with other bimodal speech recognition approaches, this approach obtains better speech recognition performance.

감정에 강인한 음성 인식을 위한 음성 파라메터 (Speech Parameters for the Robust Emotional Speech Recognition)

  • 김원구
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.