Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.441-445
/
2009
We have developed a real-time software tool to extract a speech feature vector whose time sequences consist of three groups of vector components; the phonetic/acoustic features such as formant frequencies, the phonemic features as outputs on neural networks, and some distances of Japanese phonemes. In those features, since the phoneme distances for Japanese five vowels are applicable to express vowel articulation, we have designed a switch, a volume control and a color representation which are operated by pronouncing vowel sounds. As examples of those vowel interface, we have developed some speech training tools to display a image character or a rolling color ball and to control a cursor's movement for aurally- or vocally-handicapped children. In this paper, we introduce the functions and the principle of those systems.
We apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient features for representing speech signals of a given speaker The speech segments are assumed to be generated by a linear combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis functions so that each source component is statistically independent. The learned basis functions are oriented and localized in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics and to assess their efficiency we performed speaker identification experiments and compared our results with the conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based features in that they can obtain a higher speaker identification rate.
In this paper, we propose an approach for dialect classification based on the speed and pause of speech utterances as well as the age and gender of the speakers. Dialect classification is one of the important techniques for speech analysis. For example, an accurate dialect classification model can potentially improve the performance of speaker or speech recognition. According to previous studies, research based on deep learning using Mel-Frequency Cepstral Coefficients (MFCC) features has been the dominant approach. We focus on the acoustic differences between regions and conduct dialect classification based on the extracted features derived from the differences. In this paper, we propose an approach of extracting underexplored additional features, namely the speed and the pauses of speech utterances along with the metadata including the age and the gender of the speakers. Experimental results show that our proposed approach results in higher accuracy, especially with the speech rate feature, compared to the method only using the MFCC features. The accuracy improved from 91.02% to 97.02% compared to the previous method that only used MFCC features, by incorporating all the proposed features in this paper.
In this paper, we propose a method of extracting speech features for phoneme recognition based on spikegram. The Fourier-transform-based features are widely used in phoneme recognition, but they are not extracted in a biologically plausible way and cannot have high temporal resolution due to the frame-based operation. For better phoneme recognition, therefore, it is desirable to have a new method of extracting speech features, which analyzes speech signal in high temporal resolution following the model of human auditory system. In this paper, we analyze speech signal based on a spikegram that models feature extraction and transmission in auditory system, and then propose a method of feature extraction from the spikegram for phoneme recognition. We evaluate the performance of proposed features by using a DNN-based phoneme recognizer and confirm that the proposed features provide better performance than the Fourier-transform-based features for short-length phonemes. From this result, we can verify the feasibility of new speech features extracted based on auditory model for phoneme recognition.
In this paper, we present the use of the Features Weighted Mahalanobis Distance (FWMD) in improving the performance of Likelihood Maximizing Beamforming (Limabeam) algorithm in speech recognition for microphone array. The proposed approach is based on the replacement of the traditional distance measure in a Gaussian classifier with adding weight for different features in the Mahalanobis distance according to their distances after the variance normalization. By using Features Weighted Mahalanobis Distance for Limabeam algorithm (FWMD-Limabeam), we obtained correct word recognition rate of 90.26% for calibrate Limabeam and 87.23% for unsupervised Limabeam, resulting in a higher rate of 3% and 6% respectively than those produced by the original Limabearn. By implementing a HM-Net speech recognition strategy alternatively, we could save memory and reduce computation complexity.
Various acoustic features were extracted and analyzed to estimate the inter- and intra-speaker variability of emotional speech. Tokens of vowel /a/ from sentences spoken with different modes of emotion (sadness, neutral, happiness, fear and anger) were analyzed. All of the acoustic features (fundamental frequency, spectral slope, HNR, H1-A1 and formant frequency) indicated greater contribution to inter- than intra-speaker variability across all emotions. Each acoustic feature of speech signal showed a different degree of contribution to speaker discrimination in different emotional modes. Sadness and neutral indicated greater speaker discrimination than other emotional modes (happiness, fear, anger in descending order of F-ratio). In other words, the speaker specificity was better represented in sadness and neutral than in happiness, fear and anger with any of the acoustic features.
In this paper, an adaptive method of dividing a speech signal into an initial, a medial and a final sound of the form of utterance utilized by evaluating extreme limits of short term energy and autocorrelation functions. By applying this method into speech signal composed of a consonant, a vowel and a consonant, it was divided into an initial, a medial and a final sound and its feature analysis of sample by LPC were carried out. As a result of spectrum analysis in each period, it was observed that there existed spectrum features of a consonant and a vowel in the initial and medial periods respectively and features of both in a final sound. Also, when all kinds of words were adaptively divided into 3 periods by using the proposed method, it was found that the initial sounds of the same consonant and the medial sounds of the same vowels have the same spectrum characteristics respectively, but the final sound showed different spectrum characteristics even if it had the same consonant as the initial sound.
Proceedings of the Korean Society of Precision Engineering Conference
/
2004.10a
/
pp.1123-1126
/
2004
Recognizing emotion in speech is required lots of spoken language corpus not only at the different emotional statues, but also in individual languages. In this paper, we focused on the changes speech signals in different emotions. We compared the features of speech information like formant and pitch according to the 4 emotions (normal, happiness, sadness, anger). In Korean, pitch data on monophthongs changed in each emotion. Therefore we suggested the suitable analysis techniques using these features to recognize emotions in Korean.
In this paper, we describe the comparison between the combination of features using a speech and music discrimination, which is classifying between speech and music on audio signals. Audio signals are classified into 3classes (speech, music, speech and music) and 2classes (speech, music). Experiments carried out on three types of feature, Mel-cepstrum, energy, zero-crossings, and try to find a best combination between features to speech and music discrimination. We using a Gaussian Mixture Model (GMM) for discrimination algorithm and combine different features into a single vector prior to modeling the data with a GMM. In 3classes, the best result is achieved using Mel-cepstrum, energy and zero-crossings in a single feature vector (speech: 95.1%, music: 61.9%, speech & music: 55.5%). In 2classes, the best result is achieved using Mel-cepstrum, energy and Mel-cepstrum, energy, zero-crossings in a single feature vector (speech: 98.9%, music: 100%).
In this paper, I would like to propose a dividing method by estimating the inflection points and the average magnitude energy in speech signals. The method proposed in this paper gave not only a satisfactory solution for the problems on dividing method by zero-crossing rate, but could estimate the feature of the transient period after dividing the starting point and transient period in speech signals before steady state. In the results of the experiment carried out with monosyllabic speech, it was found that even through speech samples indicated in D.C. level, the staring and ending point of the speech signals were exactly divided by the method. In addition to the results, I could compare with the features, such as the length of transient period, the short term energy, the frequency characteristics, in each speech signal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.