Branch prediction accuracy is critical for system performance in modern microprocessor architectures. The use of speculative update branch history provides substantial accuracy improvement in branch prediction. However, speculative update branch history is the information about uncommitted branch instruction and thus it may hurts program correctness, in case of miss-speculative execution. Therefore, speculative update branch history requires suitable recovery mechanisms to provide program correctness as well as performance improvement. In this paper, we propose recovery logics for speculative update branch history. The proposed solutions are recovery logics for both global history and local history. In simulation results, our solution provides performance improvement up to 5.64%. In addition, it guarantees the program correctness and almost 90% of additional hardware overhead is reduced, compared to previous works.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.13-15
/
2001
슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성 (Instruction Level Parallesim, ILP)을 향상시키는 기법이다. 최근의 값 예측기는 프로세서의 명령 이슈율이 커짐에 따라 예측 테이블의 갱신이 테이블의 참조 속도를 따라가지 못하여 예측기의 성능이 저하되는 경향이 있다. 본 논문에서는 이러한 성능저하를 줄이기 위해 명령의 결과가 나올 때까지 기다리지 않고 테이블 값을 모험적으로 갱신(speculative update)하는 스트라이드 값 예측기를 제안한다. 제안된 방식의 타당성을 검증하기 위해 SimpleScalar 시뮬레이터 상에 제안된 예측기를 구현하여 SPECint95 벤치마트를 시뮬레이션하고 제안된 스트라이드 모험적 갱신(stride speculative update)이 기존의 스트라이드 예측기 보다 성능이 향상됨을 보인다.
To improve the performance of wide-issue Superscalar microprocessors, it is essential to increase the width of instruction fetch and issue rate. Data dependences are major hurdle to exploit ILP(Instruction-Level Parallelism) efficiently, so several related works have suggested that the limits imposed by data dependences can be overcome to some extent with the use of the data value prediction. But the suggested mechanisms may access the same value prediction table entry again before they have been updated with a real data value. They will cause incorrect value prediction by using stable data and incur misprediction penalty and lowering performance. In this paper, we propose a new hybrid value predictor which achieve high performance by reducing stale data. Because the proposed hybrid value predictor can update the prediction table speculatively, it efficiently reduces the number of mispredicted instruction due to stable due to stale data. For SPECint95 benchmark programs on the 16-issue superscalar processors, simulation results show that the average prediction accuracy increase from 59% for non-speculative update to 72% for speculative update.
Proceedings of the Korean Information Science Society Conference
/
2000.10c
/
pp.639-641
/
2000
슈퍼스칼라 프로세서는 성능향상을 위해 명령어 반입 폭과 이슈 폭을 증가시키고 있다. 최근 여러 논문들에서 데이터 종속성을 제거하기 위해서 명령어의 결과 값을 예상하는 메커니즘이 연구되었다. 그러나 그러한 예측기들은 예상한 명령어의 실제 결과 값으로 예상 테이블을 갱신하기 전에 그 명령어를 다시 예상할 때 예상 실패율이 증가하여 프로세서의 성능을 감소시킨다. 본 논문에서는 비 순서적(out-of-order)으로 이슈 및 실행하는 프로세서에서 예상 적중율을 향상시키기 위해 명령어 반입 시 결과 값을 예상하는 동시에 예측기 테이블을 모험적으로 갱신(Speculative update)하는 하이브리드 결과 값 예측기를 제안한다. 본 논문에서 제안한 모험적 갱신이 예상 적중률을 향상시킬 수 있음을 보이기 위해 SimpleScalar 3.0 툴 셋을 사용하여 SPECint95 벤치마크 프로그램에서 명령어를 예상한 후 결과가 구해져서 예상테이블을 수정하기 전에 그 명령어를 다시 예상하는 빈도수를 측정하였다.
To improve the performance of wide-issue superscalar processors, it is essential to increase the width of instruction fetch and the issue rate. Removal of control hazard has been put forward as a significant new source of instruction-level parallelism for superscalar processors and the conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the branch history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a new mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the SimpleScalar 3.0/PISA tool set and the SPECINT95 benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14% and 9.21%, respectively and the average IPC by 8.75% and 18.08%, respectively over the original predictor.
Conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a simple mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the Simplescalar 3.0/PISA tool set and the SPECINTgS benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14$\%$ and 9.21$\%$, respectively and the average IPC by 8.75$\%$ and 18.08$\%$, respectively over the original predictor.
We propose a new hybrid value predictor which achieves high performance by combining several predictors. Because the proposed hybrid value predictor can update the prediction table speculatively, it efficiently reduces the number of mispredicted instructions due to stale data. Also, the proposed predictor can enhance the prediction accuracy and efficiently decrease the hardware cost of predictor, because it allocates instructions into the best-suited predictor during instruction fetch stage by using the information of static classification which is obtained from the profile-based compiler implementation. For the 16-issue superscalar processors, simulation results based on the SimpleScalar/PISA tool set show that we achieve the average prediction rates of 73% by using speculative update and the average prediction rates of 88% by adding static classification for the SPECint95 benchmark programs.
In superscalar processors, value prediction is a technique that breaks true data dependences by predicting the outcome of an instruction in order to exploit instruction level parallelism(ILP). A value predictor looks up the prediction table for the prediction value of an instruction in the instruction fetch stage, and updates with the prediction result and the resolved value after the execution of the instruction for the next prediction. However, as the instruction fetch and issue rates are increased, the same instruction is likely to fetch again before is has been updated in the predictor. Hence, the predictor looks up the stale value in the table and this mostly will cause incorrect value predictions. In this paper, a stride value predictor with the capability of speculative updates, which can update the prediction table speculatively without waiting until the instruction has been completed, is proposed. Also, the performance of the scheme is examined using Simplescalar simulator for SPECint95 benchmarks in which our value predictor is added.
Kwak Jong Wook;Kim Ju-Hwan;Jhang Seong Tae;Jhon Chu Shik
Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.766-768
/
2005
분기 영령어의 예측 정확도는 시스템 전체 성능에 중대한 영향을 미친다. 여러 분기 예측 방식 가운데 하나인 "분기 정보의 투기적 사용" 은 분기 명령어의 가장 최근 기록을 일관되게 사용할 수 있도록 도와줌으로 해서 분기 예측의 정확도 향상에 크게 기여한다. 하지만 이와 같은 기법은 미완료 분기에 대한 히스토리를 투기적으로 사용하는 방식이다. 따라서 사용되는 정보가 올바르지 못할 수 있으며, 이런 경우 적절한 복구 기법을 필요로 한다. 본 논문에서는 분기 정보의 투기적 사용에 대한 필요성과 효율적인 복구 기법을 제안한다. 제안된 기법은 이전 연구와 비교하여 상당한 하드웨어 요구량의 감소를 가져왔으며, 또한 프로그램 수행의 정확성을 해치지 않으면서 최대 $3.3\%$의 성능향상을 보였다.
In recent high-performance superscalar processors, the result value of an instruction is predicted to improve instruction-level parallelism by breaking data dependencies. Using those predicted values, instructions are speculatively executed and substantial performance can be gained. It, however, requires additional power consumption due to the frequent access and update of the value prediction table. In this paper, first, the trade-off between the performance improvement and the increased power consumption for value prediction is measured and analyzed. And, in order to reduce additional power consumption without performance loss, the technique of controlling speculative execution with confidence counter and predicting useful instructions is developed. Also, in order to prove the validity, a tool is developed that can simulate processor behavior at cycle-level and measure total energy consumption and power consumption per cycle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.