• 제목/요약/키워드: spectrum imaging

검색결과 294건 처리시간 0.026초

Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders

  • Laura Cacciaguerra;Maria A. Rocca;Massimo Filippi
    • Korean Journal of Radiology
    • /
    • 제24권12호
    • /
    • pp.1260-1283
    • /
    • 2023
  • Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.

3번 부호화한 하다마드 변환 영상 분광계의 스펙트럼 복원법 (Triply Encoded Hadamard Transform Imaging Spectrometer: Spectrum Recovery Method)

  • 박영재;서익수;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.597-599
    • /
    • 1999
  • Triply encoded HTIS(hadamard transform imaging spectrometer) is a system which applies the grill spectrometer to the HTIS. we consider a nonideality of mask transparent characteristic in estimating spectrum. Triply encoded system increases the SNR(signal to noise ration) by multiplexing effect. In this paper, we suggest an advanced $T^{-1}$ method for spectrum recovery. Then, we proved the superiority of the suggested method by comparing the average MSE(mean square error) of the other recovery methods.

  • PDF

PCB 비파괴 검사에 있어서 단일 에너지 소스와 이중 에너지 소스의 영상비교를 위한 엑스선 스펙트럼 분석 (Energy Spectrum Analysis between Single and Dual Energy Source X-ray Imaging for PCB Non-destructive Test)

  • 김명수;김기윤;이민주;강동욱;이대희;박경진;김예원;김찬규;김형택;조규성
    • 방사선산업학회지
    • /
    • 제9권3호
    • /
    • pp.153-159
    • /
    • 2015
  • Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB non-destructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

Occupational Lung Diseases: Spectrum of Common Imaging Manifestations

  • Alexander W. Matyga;Lydia Chelala;Jonathan H. Chung
    • Korean Journal of Radiology
    • /
    • 제24권8호
    • /
    • pp.795-806
    • /
    • 2023
  • Occupational lung diseases (OLD) are a group of preventable conditions caused by noxious inhalation exposure in the workplace. Workers in various industries are at a higher risk of developing OLD. Despite regulations contributing to a decreased incidence, OLD remain among the most frequently diagnosed work-related conditions, contributing to significant morbidity and mortality. A multidisciplinary discussion (MDD) is necessary for a timely diagnosis. Imaging, particularly computed tomography, plays a central role in diagnosing OLD and excluding other inhalational lung diseases. OLD can be broadly classified into fibrotic and non-fibrotic forms. Imaging reflects variable degrees of inflammation and fibrosis involving the airways, parenchyma, and pleura. Common manifestations include classical pneumoconioses, chronic granulomatous diseases (CGD), and small and large airway diseases. Imaging is influenced by the type of inciting exposure. The findings of airway disease may be subtle or solely uncovered upon expiration. High-resolution chest CT, including expiratory-phase imaging, should be performed in all patients with suspected OLD. Radiologists should familiarize themselves with these imaging features to improve diagnostic accuracy.

유방촬영장치의 타깃에 따른 에너지스펙트럼 및 팬텀영상화질 (The energy spectrum and phantom image quality according to mammography target-filter combinations)

  • 장세영;오왕균;박종배;진계환
    • 한국방사선학회논문지
    • /
    • 제7권1호
    • /
    • pp.51-55
    • /
    • 2013
  • 엑스선의 에너지가 높으면 엑스선이 피사체(object)를 통과하여 영상의 대조도를 떨어뜨리고 엑스선의 에너지가 낮으면 영상의 대조도는 증가시키지만 엑스선이 피사체에 흡수되어 환자의 피폭선량을 증가시킨다. 그러므로 적정한 엑스선 에너지는 영상의 질과 피폭선량에 영향을 미치는 매우 중요한 요소이다. 본 논문에서는 새로운 양극물질을 사용하는 유방촬영 장치의 도입에 따라 방사선 선질이 다양해진 유방촬영장치의 영상품질관리와 환자선량관리을 위하여 유방촬영장치의 타겟 물질에 따른 에너지스펙트럼을 시뮬레이션하고 팬텀 영상의 화질을 비교하였다.

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법 (Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix)

  • 심규동;박종일
    • 한국멀티미디어학회논문지
    • /
    • 제18권12호
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.

자기공명영상에서 ACR 팬텀을 이용한 잡음전력스펙트럼 평가 (Evaluation of the Noise Power Spectrum by Using American College of Radiology Phantom for Magnetic Resonance Imaging)

  • 민정환;정회원
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제47권1호
    • /
    • pp.21-28
    • /
    • 2024
  • This study was purpose to quantitative evaluation of comparison of the image intensity uniformity and noise power spectrum (NPS) by using American college of radiology (ACR) phantom for magnetic resonance imaging (MRI). The MRI was used achiva 3.0T MRI and discovery MR 750, 3.0T, the head and neck matrix shim SENSE head coil were 32 channels receive MR coil. The MRI was used parameters of image sequence for ACR standard and general hospital. NPS value of the ACR standard T2 vertical image in GE equipment was 7.65E-06 when the frequency was 1.0 mm-1. And the NPS value of the ACR hospital T1 region of interest (ROI) 9 over all vertical image in Philips equipment was 9E-08 when the frequency was 1.0 mm-1 and the NPS value of the hospital T2 ROI 9 over all vertical image in Philips equipment was 1.06E-07 when the frequency was 1.0 mm-1. NPS was used efficiently by using a general hospital vertical sequence more than the standard vertical sequence method by using the ACR phantom. Furthermore NPS was the quantitative quality assurance (QA) assessment method for noise and image intensity uniformity characteristics was applied mutatis mutandis, and the results values of the physical imaging NPS of the 3.0T MRI and ACR phantom were presented.