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This paper addresses the problem of robust waveform 
design for distributed multiple-radar systems (DMRSs) 
based on low probability of intercept (LPI), where signal-
to-interference-plus-noise ratio (SINR) and mutual 
information (MI) are utilized as the metrics for target 
detection and information extraction, respectively. 
Recognizing that a precise characterization of a target 
spectrum is impossible to capture in practice, we consider 
that a target spectrum lies in an uncertainty class bounded 
by known upper and lower bounds. Based on this model, 
robust waveform design approaches for the DMRS are 
developed based on LPI-SINR and LPI-MI criteria, 
where the total transmitting energy is minimized for a 
given system performance. Numerical results show the 
effectiveness of the proposed approaches. 
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I. Introduction 

In recent years, research on distributed multiple-radar 
systems (DMRSs) has received increasing impetus. Compared 
to a traditional monostatic radar system, a DMRS can provide 
improved capabilities by employing waveform and spatial 
diversities [1]–[3]. 

Currently, some of the most important problems concerning 
DMRSs are that of transmission waveform design and 
optimization of target detection performance, which have been 
extensively studied from various perspectives [4]–[12].  

It has been shown in some works that an optimized 
waveform can further enhance the performance of a DMRS. 
The author in [4] proposes a procedure to design an optimal 
waveform, which aims to maximize the signal-to-interference-
plus-noise ratio (SINR) at the output of a multiple-input and 
multiple-output (MIMO) radar detector. In [5], Stoica and 
others investigate a probing-signal design for a co-located 
MIMO radar based on a transmit beam pattern to maximize  
the power around the locations of targets of interest. It is 
demonstrated that the performance of the MIMO radar can be 
remarkably improved with the proper choice of probing signals. 

The application of information theory to radar systems was 
presented by Woodward more than fifty years ago [13], [14]. 
However, it is not until recently that Bell in [6] first applied 
mutual information (MI) to radar waveform design, through 
which he was able to demonstrate that an optimal information 
extraction solution is one whereby energy is distributed among 
target scattering modes. Lately, the MI criterion was introduced 
to MIMO radar waveform design and has been a long-term 
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research topic for many years. Yang and Blum in [7] develop a 
MIMO radar waveform design based on MI and minimum 
mean square error (MMSE), in which it is shown that the MI-
based waveform design method is equivalent to the MMSE 
case. The work of [8] studies multi-static radar code design 
approaches using information-theoretic criteria in the presence 
of clutter, which can improve the detection performance 
significantly. In [9], a novel two-step strategy is proposed to 
design the waveforms of adaptive MIMO radar, where it is 
shown that the strategy can provide great performance 
enhancement in terms of target detection and feature extraction. 
Other existing studies [10]–[12] also exploit similar criteria to 
optimize radar waveforms. 

Following from the above discussions, it is worth pointing 
out that most cases require only perfect knowledge of the target 
spectrum. However, one cannot obtain precise characteristics 
of a target spectrum in practice. Given such circumstances, 
robust methods seem quite attractive to tackle the 
aforementioned problems [15]. Some literatures utilize robust 
procedures for the purpose of waveform design in the presence 
of model uncertainties [16]–[18]. Moreover, up to now, we 
haven’t seen any studies on robust radar waveform design for 
DMRSs based on low probability of intercept (LPI), which is 
playing an increasingly important role in electronic warfare [3]. 
This motivates us to address this matter. 

This paper will investigate task-dependent robust 
transmission waveform design approaches based on LPI for 
DMRSs. The main contributions of this paper are summarized 
as follows. From a practical stand point, without a precise 
characterization of a target spectrum, we assume that the true 
target spectrum lies in an uncertainty class confined by known 
upper and lower bounds. Based on this band model, we 
develop robust waveform design approaches under both the 
LPI-SINR and the LPI-MI criteria. The proposed approaches 
bound the worst-case LPI performance in DMRSs. In 
particular, if the target spectrum lies in the uncertainty class, 
then the achievable LPI performance is always as good as or 
better than the robust waveforms in the worst case. Numerical 
results are provided to demonstrate that our proposed 
approaches optimize the worst-case LPI performance. No 
literature discussing LPI-based robust transmission waveform 
design methods for DMRSs existed prior to us conducting this 
work. 

The rest of this paper is organized as follows. In Section II, 
we introduce a model for the detection of a signal of a known 
target, and also propose optimal waveform design methods 
based on LPI-SINR and LPI-MI given a precise 
characterization of a target spectrum. In Section III, by taking 
the uncertainty of the target spectrum into consideration, we 
investigate a robust waveform design based on both LPI-SINR 

and LPI-MI, where the true target spectrum is presumed to lie 
within an uncertainty class bounded by known upper and 
lower bounds. A discussion of these two robust waveform 
design methods is also provided in this section. Numerical 
simulations are given in Section IV. Finally, conclusions are 
drawn in Section V. 

II. Problem Formulation 

1. Known-Target Signal Model in Signal-Dependent 
Interference 

Figure 1 illustrates our model for the detection of a signal of 
a known target in signal-dependent interference, where xi(t)   
is the ith complex-valued baseband transmit waveform with 
finite duration Ti, and hi(t) is the ith known complex-valued 
baseband target impulse response of finite duration .

ihT  Let 
Xi(f) and Hi(f) denote the Fourier transforms of xi(t) and hi(t), 
respectively.  

Let ni(t) be the ith complex-valued zero-mean channel noise 
process with power spectral density (PSD) n ( ).iS f  Likewise, 
ci(t) denotes the ith complex-valued, zero-mean Gaussian 
random process representing the signal-dependent interference 
with PSD c ( ).iS f  Further, yi(t) is the ith scattered signal, ri(t) 
is the ith complex-valued receiver filter impulse response, and 
sDMRS(t) is the overall output signal. It is noted that the fusion 
center can process all the echoes reflected from the known 
target with the matched filter bank. 

In this paper, we consider a scenario where all of a DMRS’s 
radar nodes, individually and independently, detect the signal 
of a single known target. The nodes then proceeded to extract 
information about the signal. A phase code signal is utilized to 
resist any serious common-frequency interference among radar 
nodes [18]. It is also assumed that the DMRS has a precise 
knowledge of space and time. The information about the signal 
of the known target at each radar node is sent to a fusion center, 
which combines the local observations, yi(t), to improve the 
DMRS’s system performance. A system model for the given 

 

 

Fig. 1. Model for detection of signal of known target in signal-
dependent interference. 
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Fig. 2. System model for DMRS. 
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DMRS in the described scenario is depicted in Fig. 2. As 
illustrated in Fig. 2, the received signal, sDMRS(t), from the 
DMRS, is given by 
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(1) 
where ss(t) and sn(t) denote the signal and noise components of  
sDMRS(t), respectively. 

2. Optimal Waveform Design Based on LPI-SINR 

In this paper, the SINR is utilized as a metric for the target 
detection performance of the DMRS. We assume that the 
transmitting waveform signal is essentially limited by its own 
bandwidth (BW). With the derivation in [14], the overall SINR 
of the DMRS is written as 

DMRS
1
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where Li is the attenuation from the ith radar node of the 
DMRS to the known target; that is, 

t r

2
,i i

i
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G G
L

R


                 (3) 

where Gti is the gain of the ith radar’s transmitting antenna, Gri  
is the gain of the ith radar’s receiving antenna, and Ri is the 
range from the ith radar node to the known target. In this case, 

we can see that the SINR is related to the transmission 
waveforms, the target spectra, the noise PSD, and the 
interference PSD. Intuitively, maximization of SINR means 
better target detection performance for the DMRS. However, 
this also leads to the transmission of more energy by the 
DMRS, which means that the DMRS will ultimately become 
more vulnerable in modern electronic warfare. 

Herein, we concentrate on an LPI-based optimal waveform 
design for the DMRS; the purpose of which is to minimize the 
total transmitting energy for a predefined threshold of SINR 
such that the LPI performance is met. An optimal waveform 
design based on LPI-SINR can be formulated as follows: 
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(4) 
where th

SINR  denotes the predefined threshold of SINR in the 
DMRS. 
Theorem 1. The optimal transmission waveforms that 

minimize the total transmitting energy, 
2

1
BW

( ) d ,tN

ii
X f f
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under the SINR constraint, th
DMRS SINR(SINR) ,  should 
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 2
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respectively, and A is a constant determined by the SINR 
constraint 
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 (8) 
The solutions to (4) demonstrate that optimal transmission 

waveforms based on LPI-SINR for minimizing the total 
transmitting energy have frequency spectra obtained by 
performing a water-filling operation [12] on the functions  

 ( ) ( ) ( ).i iB f A D f i    For a predefined threshold, th
SINR , 

once A is obtained, 
2

1
BW

( ) dtN

ii
X f f

   can be calculated by 
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substituting (5) into (4). The derivation of Theorem 1 is similar 
to [12]. 

3. Optimal Waveform Design Based on LPI-MI 

As implied in [12], the MI between the DMRS echo and the 
target impulse response can be used as a metric for target 
estimation performance. The achievable MI in the DMRS is 
given by 
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where ( )

i iy h iT T T i     denotes the duration of the echo 

yi(t). For brevity, we assume ( ),
iy yT T i   and (8) can be 

simplified as 
2 2 2

DMRS 2c 2 n
1 BW

( ) ( )
(MI) ln 1 d .

( ) ( ) ( )

tN
i i i

y
i y i i i i

H f X f L
T f

T S f X f L S f

     
       

 

(10) 
From (10), one can observe that the MI is related to the 
transmitting waveforms, the target spectra, the noise PSD, and 
the interference PSD. It is indicated in [19] that maximizing MI 
between a DMRS return and a target impulse response can 
result in the DMRS having better capability to characterize the 
target, which also results in worse LPI performance. The 
optimal waveform design approach based on LPI-MI can be 
expressed as 
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where th
MI  denotes the predetermined threshold of MI in the 

DMRS. 
Theorem 2. The optimal transmission waveforms that 

minimize the total transmitting energy 
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respectively, and A is a constant calculated by the MI constraint 
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The LPI-MI-based optimal transmission waveforms also 

perform water-filling operations, and A controls the 
transmitting energy. The approximate transmitting energy 

2

1
BW

( ) dtN

ii
X f f

   can then be calculated by substituting 

(12) into (11). The derivation of Theorem 2 is similar to [12]. 

III. Robust Transmission Waveform Design 

In this section, we consider the uncertainty of the target 
spectrum, where a precise characterization of it is unknown 
because the exact target-radar orientation (TRO) is practically 
imprecise. The target spectrum in the direction of radar node 

( 1, , )ti i N     is assumed to be in a set, called an 
uncertainty class ( ),i  bounded by known upper and lower 
bounds. As shown in Fig. 3, the nominal target spectrum is 
illustrated by the blue solid line, and the upper and lower 
bounds of the uncertainty class at each frequency are depicted 
by the error bars; that is, the nominal value plus or minus a 
random number between zero and one. The samples of the 
target spectrum in the direction of radar node i satisfy 

 , ,0 ( ) , 1, , ( ),i i k i k i kl H f u k K i         (16) 

where {fk} are the frequency samples. Let ui, k denote the upper 
bound at frequency fk of radar node i. Likewise, li, k denotes the 
lower bound at frequency fk of radar node i. Furthermore, since 
a confidence band for the target spectrum could be determined 
via spectrum estimation, this band model is widely used in 
robust signal processing. It is reasonable to obtain the upper 
and lower bounds for the estimated target spectrum by field 
measurement and modeling [16]. It is worth noting that a larger 
difference between the upper and lower bounds indicates 
greater uncertainty about the known target. In addition, we 
should note that the distance between the upper and lower 
bounds at each frequency might be different. 

Based on the band model, the robust transmission waveform 
robust ( )iX f  is the optimal waveform for the worst case, 

worst( ) ( )i iH f H f , where worst ( )iH f  is referred to as the 

least favorable target spectrum. If other waveforms are utilized, 

then the achievable LPI performance of the DMRS will be 
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Fig. 3. Illustration of bounded target spectrum. 
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degraded; whereas, if the robust transmission waveform 

robust ( )iX f  is employed, then the LPI performance will be 
always as good as or better than the case worst( ) ( )i iH f H f  
for all the target spectra in the uncertainty class, which means 
that the achievable LPI performance will never be worse than 
this limit. Thus, the robust transmission waveform is optimum 
for the worst-case target spectrum in the uncertainty class. We 
can conclude that employing a robust transmission waveform 
design is a well-accepted engineering approach. 

1. Robust Waveform Design Based on LPI-SINR 

As suggested by the robust signal processing methodology 
described in [15], it is noted that it would be wise to use the 
robust waveform design approach to guarantee the worst-case 
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which is equivalent to the following problem: 
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where  ,( ) , 1, , ( 1, , )i i k tL f l k K i N      denotes the 
lower bound of the target spectrum uncertainty class in the 

direction of radar i. 
Theorem 3. The robust optimal transmission waveforms for 
the model for the detection of a signal of a known target, which 
optimize (18), can be found by 
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respectively, and the constant A  is chosen to satisfy 
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2. Robust Waveform Design Based on LPI-MI 

The robust waveform design approach based on LPI-MI 
aims to solve 
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The equivalent form of (23) can be expressed as 
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Theorem 4. The solution of the robust optimization problem 
stated in (24) should satisfy 

 2robust ( ) max 0, ( ) ( ) ( ),i i iX f B f A D f i     (25) 

where ( )iB f  and ( )iD f  can be given by 
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respectively, and the constant A  is chosen now to satisfy 
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From Theorems 3 and 4, it is worth pointing out that the robust 

transmission waveforms based on LPI-SINR and LPI-MI are 

formed by performing a water-filling action on the function 

 ( ) ( ) ( )i iB f A D f i   . 

3. Discussion 

One important finding from the above solutions is that in 
both the LPI-SINR- and LPI-MI-based robust waveform 
design approaches, the worst case is the lower bound of the 
target spectrum uncertainty class. Therefore, the optimization 
of considering both the upper and lower bounds of the 
uncertainty class is somewhat restrictive [16], [20]. The 
limitation could be reduced if we remove the upper bound for 
both the LPI-SINR and LPI-MI cases; that is, the same 
solutions can also be obtained by employing only the lower 
bound of the uncertainty class of the target spectrum. 

The appropriate waveform design criterion should be chosen 
based on different tasks in the DMRS, such that the 
transmission energy could be utilized most efficiently to 
achieve the best LPI performance. In the robust waveform 
design criteria, Theorems 3 and 4 are more concerned with the 
problem of how the LPI-SINR- and LPI-MI-based waveform 
approaches are affected by the uncertainty of the target 
spectrum. As indicated in Theorems 3 and 4, the uncertainty of 
the target spectrum would impact the two criteria in the same 
way. The same decrease in the target spectrum will lead to the 
same changes in both criteria. To be specific, a decrease of the 
target spectrum would result in an increase in the total 
transmitting energy, which means that the achievable LPI 
performance of the DMRS would generally degrade. Since the 
robust waveform design approaches are intended to bound the 
worst-case LPI performance, we choose the robust waveforms 
based on the lower bounds of the uncertainty class of the target 
spectra for both criteria. 

IV. Numerical Results 

In this section, we provide some numerical results to 
demonstrate the effectiveness of utilizing the robust 

transmission waveforms given in Theorems 3 and 4. For 
illustrative purposes, Fig. 4 depicts the spatial distribution of 
the radar nodes in the DMRS with respect to a given known 
target that is within the radar nodes’ detection zones; the 
purpose of which is to minimize the impact of the topological 
configuration on the simulation results. The distance between 
each radar node and the known target is 141.4 km. Throughout 
this section, Gti and Gri are both set to be 30 dB. We suppose 
that the power of the additive Gaussian noise is 7.680 × 10–14 W, 
the duration of the echo Ty is 0.01 s, and th

SINR  and th
MI  are 

set to be 14.43 dB and 5.11 nats, respectively. 
The target and interference spectra in the direction of the 

radar nodes of the DMRS are shown in Figs. 5, 7, 9, and 11. 
The nominal target spectra are illustrated by the black solid 
lines. The uncertainty class of each target spectrum is similar to   
Fig. 3, which is not illustrated for clarity. Figures 6, 8, 10, and 
12 depict the LPI-SINR- and LPI-MI-based optimal waveform  

 
 

Fig. 4. DMRS and known-target configuration in 2D. 
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Fig. 5. Target and interference spectra in direction of Radar 1.
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Fig. 6. Optimal waveform design of Radar 1. 
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Fig. 7. Target and interference spectra in direction of Radar 2.
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Fig. 8. Optimal waveform design of Radar 2. 
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design results, which give insight about the optimal energy 
allocation for different tasks in the DMRS. The robust 

 

Fig. 9. Target and interference spectra in direction of Radar 3.
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Fig. 10. Optimal waveform design of Radar 3. 
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waveform results are similar to the optimal waveform results 
and are not illustrated; in addition, they are only related to the 
lower bounds of the uncertainty class of the target spectra. For 
all the radar nodes in the DMRS, it can be seen that the  
transmission energy allocation is determined by the target 
spectra relative to the radar nodes and the interference power 
levels. To be specific, in both the LPI-SINR- and LPI-MI-
based waveform design methods, more transmission energy is 
allocated to those radar nodes that have a larger target spectra 
and suffer less interference power. To minimize the total 
transmitting energy for a predetermined threshold of the 
DMRS’s performance, the LPI-SINR-based transmission 
waveforms are formed by a water-filling action, which only 
places the minimum energy over the dominant frequency 
components of the target spectra; that is, the frequency bands 
with the largest coefficients. In contrast, the LPI-MI-based 
waveforms tend to distribute the energy over multiple frequency-
bands. One reason for this difference is that the calculation 
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Fig. 11. Target and interference spectra in direction of Radar 4.
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Fig. 12. Optimal waveform design of Radar 4. 
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of MI involves log computations, which lowers those terms 
that are related to the transmission of energy over frequency 
bands and have large coefficients [16]. Thus, fewer dominant 
frequency-components would be better. Here, energy is 
distributed over multiple frequency-bands by performing a 
water-filling operation. Furthermore, we can observe that both 
optimized waveforms concentrate their energy in the frequency 
components where the signal-dependent interference power is 
potentially the lowest. 

The SINR performance curves versus the transmitting 
energy is depicted in Fig. 13; the results were obtained as a 
result of 10,000 Monte-Carlo trials. In Fig. 13, the SINR of  
the DMRS when utilizing the LPI-SINR-based optimal 
waveforms for a nominal target spectrum [12] (Nt = 4), the 
robust waveforms for LPI-SINR in the worst case (Nt = 4), the 
robust waveforms for LPI-MI in the worst case (Nt = 4), the 
predefined waveforms in the worst case (Nt = 4), and the robust 

 

Fig. 13. SINR performance curves for robust waveforms. 
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waveforms for LPI-SINR in the worst case (Nt = 1) are 
compared. The results show that the best achievable SINR is 
obtained when utilizing the optimal waveforms designed for 
the nominal target spectra, which in turn implies that the 
DMRS is transmitting the minimum amount of energy for a 
predefined threshold of SINR. Therefore, the DMRS has the 
best LPI performance to defend against passive intercept 
receiver attacks. When the lower envelope in Fig. 3 is the worst 
case in the uncertainty class, the robust waveform design 
approaches are employed. It is not surprising that the robust 
waveforms transmit more energy than the nominal optimal 
waveforms for a predetermined threshold of target detection 
performance due to the fact that the robust waveform design 
approaches have less prior knowledge about the target spectra. 
However, if the robust waveforms are used, then the achievable 
LPI performance would not be worse than this bound; thus, the 
LPI performance will be guaranteed. It can be concluded that 
the robust transmission waveform for LPI-SINR is optimum 
for the worst-case target spectrum in the uncertainty class.  

Predefined waveforms are those that allocate transmitting 
energy uniformly over the whole of a frequency band with no 
prior knowledge of the known target, and which have the 
worst-case LPI performance. It is obvious that the worst-case 
LPI performance of the robust waveforms can be significantly 
enhanced over the worst-case LPI performance of the 
predefined waveforms. This further confirms the effectiveness 
of exploiting the robust waveforms. Moreover, to compare the 
two robust waveforms obtained under different criteria, a red 
pentagram line is plotted in Fig. 13, which can be obtained by 
employing the robust waveforms for LPI-MI when the true 
target spectra are the lower bounds of the uncertainty classes of 
the target spectra. Obviously, the robust waveforms based on 
LPI-MI exhibit a much inferior LPI performance than the LPI- 
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Fig. 14. MI performance curves for robust waveforms. 
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SINR-based case. This is because of the misapplication of  
the robust waveforms, which gives insight into the inherent 
difference between the two robust waveform design criteria 
[16]. In addition, we can see that the available SINR of the 
LPI-SINR-based robust waveforms in the worst case (Nt = 4) is 
much larger than that in the case Nt = 1. This is because a 
DMRS can provide great spatial diversity in terms of the 
achievable target detection performance, which in turn 
strengthens the LPI benefits of using a DMRS. 

Similar to Fig. 13, we show the MI performance curves 
versus the transmitting energy in Fig. 14, which corresponds to 
the MI of the DMRS when utilizing the LPI-MI-based optimal 
waveforms for the nominal target spectrum [10], [12] (Nt = 4), 
the robust waveforms for LPI-MI in the worst case (Nt = 4), the 
robust waveforms for LPI-SINR in the worst case (Nt = 4), the 
predefined waveforms in the worst case (Nt = 4), and the robust 
waveforms for LPI-MI in the worst case (Nt = 1), respectively. 
It is worth pointing out that for MI, the worst-case performance 
can be obtained when the true target spectra are the lower 
envelopes as illustrated in Fig. 3. Additionally, we also plot a 
blue round line in Fig. 14, which can be achieved by utilizing 
the robust waveforms for LPI-SINR when the true target 
spectra are the lower envelopes of the uncertainty classes of the 
target spectra. One can observe from Fig. 14 the benefits of 
utilizing the robust waveforms for LPI-MI. However, the 
worst-case performance enhancement of employing LPI-MI-
based robust waveforms is less remarkable than that of 
employing the LPI-SINR-based robust waveform design 
criterion, which is due to the fact that the calculation of MI 
involves the logarithm function and scales the effect down. 
When the target spectrum lies in the uncertainty class, the 
achievable LPI performance will be always as good as or better 
than the robust waveforms in the worst case, which is not 

surprising since the robust waveform effectively bounds the 
worst possible LPI performance over the entire uncertainty 
class. Besides, it should be noted that the presented robust 
waveform design approaches based on LPI-SINR and LPI-MI 
are significantly simple to implement and can achieve better 
LPI performance in a DMRS. In various cases, the effectiveness 
and benefits of exploiting robust waveforms would be more or 
less the same [20]. Thus, it is worth pointing out that using a 
robust transmission waveform design optimizes the worst-case 
LPI performance, and it is a well-accepted engineering 
approach. 

V. Conclusion 

In this paper, the approaches of task-dependent robust 
transmission waveform design for a DMRS based on LPI are 
presented, where the uncertainty of the target spectrum is 
considered. A band model is utilized by assuming that the 
target spectrum lies in an uncertainty class with known upper 
and lower bounds. With the limited knowledge of the target 
spectrum, robust waveform design methods are developed for 
the DMRS under LPI-SINR and LPI-MI criteria. Numerical 
results demonstrate that the proposed approaches are effective 
in enhancing the LPI performance of the DMRS in the worst 
possible scenario. For our future research, we intend to focus 
on other optimization criteria to enhance the robust LPI 
performance of a DMRS. 
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