본 논문은 합성곱 신경망 기반 수중 표적 분류기의 성능 향상을 위한 최적의 전처리 기법을 제시한다. 실제 선박 수중신호를 수집한 데이터 세트의 주파수 분석을 통해 강한 저주파 신호로 인한 특성 표현의 문제점을 확인하였다. 이를 해결하기 위해 다양한 스펙트로그램 기법과 특성 스케일링 기법을 조합한 전처리 기법들을 구현하였다. 최적의 전처리 기법을 확인하기 위해 실제 데이터를 기반으로 합성곱 신경망을 훈련하는 실험을 수행하였다. 실험 결과, 로그 멜 스펙트로그램과 표준화 및 로버스트정규화 스케일링 기법의 조합이 높은 인식 성능과 빠른 학습 속도를 보임을 확인하였다.
Infants express their physical and emotional needs to the outside world mainly through crying. However, most of parents find it challenging to understand the reason behind their babies' cries. Failure to correctly understand the cause of a baby' cry and take appropriate actions can affect the cognitive and motor development of newborns undergoing rapid brain development. In this paper, we propose an infant cry recognition system based on deep transfer learning to help parents identify crying babies' needs the same way a specialist would. The proposed system works by transforming the waveform of the cry signal into log-mel spectrogram, then uses the VGGish model pre-trained on AudioSet to extract a 128-dimensional feature vector from the spectrogram. Finally, a softmax function is used to classify the extracted feature vector and recognize the corresponding type of cry. The experimental results show that our method achieves a good performance exceeding 0.96 in precision and recall, and f1-score.
본 논문은 순환 신경망 대신 합성곱 신경망을 사용하여 시계열 데이터 분류 성능을 분석한다. TSC(Time Series Community)에는 GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)와 같은 전통적인 시계열 데이터 이미지화 알고리즘들이 있다. 실험은 이미지화 알고리즘들에 필요한 하이퍼 파라미터들을 조정하면서 합성곱 신경망의 성능을 평가하는 방식으로 진행된다. UCR 아카이브의 GunPoint 데이터셋을 기준으로 성능을 평가했을 때, 본 논문에서 제안하는 STFT(Short Time Fourier Transform) 알고리즘이 최적화된 하이퍼 파라미터를 찾은 경우, 기존의 알고리즘들 대비 정확도가 높고, 동적으로 feature map 이미지의 크기도 조절가능하다는 장점이 있다. GAF 또한 98~99%의 높은 정확도를 보이지만, feature map 이미지의 크기를 동적으로 조절할 수 없어 크다는 단점이 존재한다.
영아는 울음이라는 비언어적 의사 소통 방식을 사용하여 모든 욕구를 표현한다. 하지만 영아의 울음소리를 파악하는 것에는 어려움이 따른다. 영아의 울음소리를 해석하기 위해 많은 연구가 진행되었다. 이에 본 논문에서는 3D 특징 벡터를 이용한 영아의 울음소리 분류를 제안한다. Donate-a-corpus-cry 데이터 세트는 복통, 트림, 불편, 배고픔, 피곤으로 총 5 개의 클래스로 분류된 데이터를 사용한다. 데이터들은 원래 속도의 90%와 110%로 수정하는 방법인 템포조절을 통해 증강한다. Spectrogram, Mel-Spectrogram, MFCC 로 특징 벡터화를 시켜준 후, 각각의 2 차원 특징벡터를 묶어 3차원 특징벡터로 구성한다. 이후 3 차원 특징 벡터를 ResNet 과 EfficientNet 모델로 학습을 진행한다. 그 결과 2 차원 특징 벡터는 0.89(F1) 3 차원 특징 벡터의 경우 0.98(F1)으로 0.09 의 성능 향상을 보여주었다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.212-220
/
2024
A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.
2019년 11월 중국 우한시에서 발병한 코로나19는 2020년 중국을 넘어 세계로 퍼져나가 2020년 3월에는 전 세계적으로 확산되었다. 코로나19와 같이 전염성이 강한 바이러스는 예방과 확진시 적극적인 치료도 중요하지만 우선 전파 속도가 빠른 바이러스인 점을 감안할 때, 확진 사실을 재빠르게 파악하여 전파를 차단하는 것이 더욱 중요하다. 그러나 감염여부를 확인하기 위한 PCR검사는 비용과 시간이 많이 소요되고, 자가키트검사 또한 접근성은 쉽지만 매번 수시로 받기에는 키트의 가격이 부담이 될 수밖에 없는 실정이다. 이러한 상황에서 기침 소리를 기반으로 코로나19 양성 여부를 판단할 수 있게 된다면 누구나 쉽게 언제, 어디서든 확진 여부를 체크할 수 있어 신속성과 경제성 측면에서 큰 장점을 가질 수 있을 것이다. 따라서 본 연구는 기침 소리를 기반으로 코로나19 확진 여부를 식별할 수 있는 분류 모델을 개발하는 것을 목적으로 하였다. 이를 위해, 본 연구에서는 먼저 MFCC, Mel-Spectrogram, Spectral contrast, Spectrogram 등을 통해 기침 소리를 벡터화 하였다. 이 때, 기침 소리의 품질을 위해 SNR을 통해 잡음이 많은 데이터는 삭제하였고, chunk를 통해 음성 파일에서 기침 소리만 추출하였다. 이후, 추출된 기침 소리의 feature를 이용하여 코로나 양성과 음성을 분류하기 위한 모델을 구축하였으며, XGBoost, LightGBM, FCNN 알고리즘을 통해 모델 학습을 수행하고 각 알고리즘별 성능을 비교하였다. 또한, 기침 소리를 다차원 벡터로 변환한 경우와, 이미지로 변환한 경우에 대해 모델 성능에 대한 비교 실험을 수행하였다. 실험 결과, 건강상태에 대한 기본정보와 기침 소리를 MFCC, Mel-Spectogram, Spectral contrast, 그리고 Spectrogram을 통해 다차원 벡터로 변환한 feature를 모두 활용한 LightGBM 모델이 0.74의 가장 높은 정확도를 보였다.
유비쿼터스 시대의 도래에 따른 서비스의 고급화는 다양한 형태의 사용자 단말기의 개발을 유도하였으며, 이러한 사용자 단말기의 변화는 다양한 형태의 인간친화형 사용자 인터페이스의 개발로 이어지게 되었다. 이러한 다양한 형태의 인간친화형 사용자 인터페이스 중, 인간의 뇌를 활용한 사용자 인터페이스, 즉, BCI에 관한 연구가 최근 산발적으로 다양하게 진행되고 있다. 현재 진행되어지고 있는 다양한 형태의 BCI 관련 연구들은, 연구 초기 수준을 극복하지 못하는 실정이며, 이러한 연구개발의 지체 이유로는 체계적인 연구가 진행되어지지 않고 있다는 점을 들 수 있다. 대부분의 HCI 또는 BCI 관련 연구들은 생체신호를 수집하여 신호처리 과정을 거치게 되며, 이때 중요한 연구요소중의 하나로 DB구축 분야를 들 수 있다. 하지만 현재 진행되고 있는 대부분의 BCI 관련 연구의 경우 DB구축부터 시작한 체계적인 연구가 이루어지고 있지 않는 실정이다. 뇌파를 제외한 다른 생체신호, 즉 오감자극을 활용한 HCI 연구와는 달리, 뇌파 DB의 경우 피험자를 제외한 다른 연구 관련자들은 현재 피험자로부터 수집되어지고 있는 DB가 실험에 필요한 적절한 신호인지 구분하기 힘든 실정이다. 또한, 뇌파 신호의 수집 시 연구관련 자들은 피험자에게 정확한 지침을 제시하지 못하고 있는 실정이며 어떠한 방법으로 피험자가 실험에 집중하여야 확연한 패턴을 보이는 차별화 된 뇌파 신호의 생성이 가능한지 명확하게 알려지지 않은 실정이다. 따라서 본 논문에서는 뇌파를 활용한 BCI구현과 사용자 의지에 따른 활용 시 보다 정확하고 높은 인식률 구현을 하기 위한 기초 연구 방안으로 정확하고 효율적인 뇌파 DB구축 시스템을 제안한다. 또한 현재까지 명확하게 알려지지 않은 효과적인 뇌파생성 방안을 동시에 연구하기 위하여 오감자극을 활용한 뇌파 DB 수집이 가능한 구축 시스템을 구현하며 각 방법에 따라 구축되어진 뇌파의 패턴 분석을 통한 효율적인 뇌파 DB구축 방안을 제안한다.
표면파를 이용하여 지반의 강성을 추정하는 기법인 SASW 시험에서 위상속도(phase volocity)를 결정하기 위해서는 위상각(phase angle)의 전개(unwrapping)가 필수적이다. 포장 구조에서처럼 깊이에 따라 강성의 차이가 현저한 경우는 기존의 위상각 전개방식으조는 정확한 위상속도를 결정하기가 용이하지 않다. 이는 기존의 위상각 전개방식은 주위상각(principal phase angle)에 2n의 정수배를 더하는 것인데, 위상각 스펙트럼(phase spectrum)에서 정수배를 결정하는 데에 어려움이 있기 때문이다. 본 연구에서는 이러한 문제점을 해결하기 위해서, 임펄스 응답 필터 기법(Impulse Response Filtration Technique), 또는 IRF기법이라고 하는 새로운 위상각 분석 기법을 제안하였다. IRF 기법의 원리는 임펄스 응답을 필터 처리함으로써 파군(wave group)을 분리하는 것인데,파군의 분리는 임펄스 응답에 대한 Gabor spectrogram을 분석한 정보를 근거로 한다. Gabor spectrogram은 전파되는 파의 에너지를 주파수-시간 공간에서 나타내는 contour 그림으로서, 파군의 전파 상황을 시각적으로 표현하는 수단이다. 이렇게 필터 처리된 임펄스 응답을 이용하면, 위상각 스펙트럼의 분석을 정확하게 할 수 있으며, 위상각의 전개에 있어서 난해함을 제거할 수 있다. 끝으로, 전쳔적인 포장 구조에 대하여 이론적으로 SASW 시험을 모사하였으며, 그 결과를 이용하여 IRF기법의 효용성을 입증하였다.
본 논문에서는 음향 스펙트로그램을 이용하여 수중 이동표적의 위치를 추정하기 위한 방법을 연구하였다. 주파수와 시간의 2차원 평면으로 표현되는 스펙트로그램은 수중 운동체의 이동 정보를 제공한다. 음원과 수신 센서간의 거리가 충분히 멀 경우 스펙트로그램의 넓은 주파수에 걸쳐 발생하는 줄무늬들은 해수면 및 해저면에 의해 반사된 모드간의 간섭을 의미하고, 이때 최대 음압이 발생하는 줄무늬의 기울기는 음향 도파관 불변인자 ${\beta}$와 표적과 센서간의 거리에 의해 영향을 받는다. 2개 이상의 센서를 사용하여 이동하는 선박의 광대역 방사 소음을 측정한 경우 스펙트로그램에 나타나는 최대 음압이 발생하는 줄무늬의 기울기와 줄무늬가 주파수축에서 천이된 비율이 표적과 센서간의 거리에 따라 각각 다르게 나타난다. 두개의 센서를 두 정점으로 가정하여 표적에 이르는 거리의 비가 일정한 값을 가지면서 운동하는 점의 자취인 아폴로니오스의 원을 형성하고, 3개의 센서를 사용할 경우 두 개의 원이 서로 교점을 형성하는데, 이 교점의 좌표를 표적의 위치라 추정한다. 제안된 위치 추정 기법의 성능을 평가하기 위해 음파전달 프로그램을 이용한 시뮬레이션을 수행하였다.
Interior noise, engine speed and vehicle speed are measured under road-load condition and interior noise signal is transformed by using the transient signal analysis methods such as the spectrogram and wavelet transform. Using the analyzed results, subjective noise criteria such as the loudness, noisiness and articulation index at each vehicle speed can be estimated and characteristics of interior noise for various running mode can be discussed in the viewpoint of noise quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.