DOI QR코드

DOI QR Code

Preprocessing performance of convolutional neural networks according to characteristic of underwater targets

수중 표적 분류를 위한 합성곱 신경망의 전처리 성능 비교

  • 박경민 (한국해양대학교 해양공학과) ;
  • 김두영 (대한민국 해군사관학교 사이버과학과)
  • Received : 2022.07.21
  • Accepted : 2022.10.05
  • Published : 2022.11.30

Abstract

We present a preprocessing method for an underwater target detection model based on a convolutional neural network. The acoustic characteristics of the ship show ambiguous expression due to the strong signal power of the low frequency. To solve this problem, we combine feature preprocessing methods with various feature scaling methods and spectrogram methods. Define a simple convolutional neural network model and train it to measure preprocessing performance. Through experiment, we found that the combination of log Mel-spectrogram and standardization and robust scaling methods gave the best classification performance.

본 논문은 합성곱 신경망 기반 수중 표적 분류기의 성능 향상을 위한 최적의 전처리 기법을 제시한다. 실제 선박 수중신호를 수집한 데이터 세트의 주파수 분석을 통해 강한 저주파 신호로 인한 특성 표현의 문제점을 확인하였다. 이를 해결하기 위해 다양한 스펙트로그램 기법과 특성 스케일링 기법을 조합한 전처리 기법들을 구현하였다. 최적의 전처리 기법을 확인하기 위해 실제 데이터를 기반으로 합성곱 신경망을 훈련하는 실험을 수행하였다. 실험 결과, 로그 멜 스펙트로그램과 표준화 및 로버스트정규화 스케일링 기법의 조합이 높은 인식 성능과 빠른 학습 속도를 보임을 확인하였다.

Keywords

Acknowledgement

이 논문은 2022년 해군사관학교 해양연구소 학술연구과제 연구비 지원으로 수행된 연구임.

References

  1. X. Xiao, W. Wang, Q. Ren, P. Gerstoft, and L. Ma, "Underwater acoustic target recognition using attentionbased deep neural network," JASA Express Lett. 1, 106001 (2021).
  2. D. Wang, L. Zhang, C. Bao, S. Ma, and Y. Wang, "Passive Ship Localization in a Shallow Water Using Pre-Trained Deep Learning Networks," Proc. the 23rd ICA, 1956-1962 (2019).
  3. J. S. Abel and K. Lashkari, "Track parameter estimation from multipath delay information," J. Ocean Eng. 12, 207-221 (1987). https://doi.org/10.1109/JOE.1987.1145224
  4. B. Friedlander, "Accuracy of source localization using multipath delays," IEEE Trans. Aerospace and Electronic Systems, 24, 346-359 (1988). https://doi.org/10.1109/7.7176
  5. M. Johnson, L. Freitag, and M. Stojanovic, "Improved doppler tracking and correction for underwater acoustic communications," Proc. IEEE ICASSP. 1, 575-578 (1997).
  6. N. Owsley and G. Swope, "Time delay estimation in a sensor array," IEEE Trans. ASSP. 29, 519-523 (1981). https://doi.org/10.1109/TASSP.1981.1163554
  7. Y. Bengio, I. Goodfellow, and A. Courville, Deep Learning (MIT press, Cambridge, 2017), pp. 1-272.
  8. W. Zhang, Y. Wu, D. Wang, Y. Wang, Y. Wang, and L. Zhang, "Underwater target feature extraction and classification based on gammatone filter and machine learning," Proc. ICWAPR, 42-47 (2018).
  9. H. Niu, E. Reeves, and P. Gerstoft, "Source localization in an ocean waveguide using supervised machine learning," J. Acoust. Soc. Am. 142, 1176-1188 (2017). https://doi.org/10.1121/1.5000165
  10. D. Santos-Dominquez, S. Torres-Guijarro, A. CardenalLopez, and A. Pena-Gimenez, "ShipsEar: An underwater vessel noise database," Appl. Acoust. 113, 64- 69 (2016). https://doi.org/10.1016/j.apacoust.2016.06.008
  11. M. Irfan, Z. Jiangbin, S. Ali, M. Iqbal, Z. Masood, and U. Hamid, "DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification," Expert Syst. Appl. 183, 115270 (2021).
  12. X. Yin, X. Sun, P. Liu, L. Wang, and R. Tang "Underwater acoustic target classification based on LOFAR spectrum and convolutional neural network," Proc. 2nd Int. Conf. AIAM, 59-63 (2020).
  13. H. Yang, J. Li, S. Shen, and G. Xu, "A deep convolutional neural network inspired by auditory perception for underwater acoustic target recognition," Sensors 19, 1104 (2019).
  14. Z. Wei, Y. Ju, and M. Song, "A method of underwater acoustic signal classification based on deep neural network," Proc. 5th ICISCE, IEEE Computer Society, 46-50 (2018).
  15. M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique, "Effect of data scaling methods on machine learning algorithms and model performance," Technologies, 9, 52 (2021).
  16. W. E. Oh, "Comparison of environmental sound classification performance of convolutional neural networks according to audio preprocessing methods" (in Korean), J. Acoust. Soc. Kr. 39, 143-149 (2020).
  17. G. M. Wenz, "Acoustic ambient noise in the ocean : spectra and sources," J. Acoust. Soc. Am. 34, 1936-1956 (1962). https://doi.org/10.1121/1.1909155
  18. V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," Proc. 27th ICML, 807-814 (2010).
  19. X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," Proc. 13th Int. Conf. AISTATS, 249-256 (2010).
  20. B. McFee, C. Raffel, D. Liang, D. Ellis, M. Mcvicar, E. Battenberg, and O. Nieto, "Librosa: Audio and music signal analysis in python," Proc. 14th Python Sci. Conf. 18-24 (2015).
  21. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, and D. Cournapeau, "Scikit-learn: Machine learning in Python," J. Mach. Learn Res. 12, 2825-2830 (2011).
  22. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H van Kerkwijk, M. Brett, A. Haldane, J. Fernandez Del Rio, M. Wiebe, P. Peterson, P. GerardMarchant, K. Sheppard., T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E Oliphant, "Array programming with NumPy," Nature, 585, 357-362 (2020). https://doi.org/10.1038/s41586-020-2649-2
  23. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, Cr. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "Tensorflow: Large-scale machine learning on heterogeneous distributed systems," arXiv preprint arXiv:1603.04467 (2016).
  24. D. P. Kingma and J. Ba, "Adam: a method for stochastic optimization," Proc. 3th ICLR, 1-13 (2015).