• Title/Summary/Keyword: spectral processing

Search Result 484, Processing Time 0.027 seconds

A Study on the Crustal Structure of the Southern Korean Peninsula through Gravity Analysis (중력자료분석을 통한 한반도 지각구조에 관한 연구)

  • Kwon, Byung Doo;Yang, Su Yeong
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.309-320
    • /
    • 1985
  • The crustal structure of the southern part of the Korean peninsula has been investigated based on the results of processing and anlaysis of gravity data. The processing techniques involve i) seperation of regional and residual anomalies by polynomial fittings, ii) power spectral analyses to determine the mean depth to the crustal base, iii) a filtering operation called "high-cut filtering and resampling," and iv) downward continuation to determine the undulation of the crustal base. The Bouguer anomalies show a lineation in the NE-SW direction which is the same as that of most mountains and tectonic lines of this area. The mean crustal depth is found to be 34km. The depth of the crustal base is varying in the estimated range of 26km to 36km with a thinner crust below the east coast than that of the west coast. The relief of the crustal base is appeared to be correlated with the regional surface topography. The linear regression relations computed between elevations and gravity anomalies indicate that the crust of this area seems to be not in perfect isostatic equilibrium but a little undercompensated state.

  • PDF

CHARACTERIZATION OF GEOTECHNICAL SITES BY MULTI-CHANNEL ANALSIS OF SURFACE WAVES(MCASW) (지표층의 탄성계수 측정을 위한 새로운 탄성파 방법)

  • 박춘병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.15.2-22
    • /
    • 1995
  • Evaluating stiffness of near-surface materials has been one of the critically important tasks in many civil engineering works. It is the main goal of geotechnical characterization. The so-called deflection-response method evaluates the stiffness by measuring stress-strain behavior of the materials caused by static or dynamic load. This method, however, evaluates the overall stiffness and the stiffness variation with depth cannot be obtained. Furthermore, evaluation of a large-area geotechnical site by this method can be time-consuming, expensive, and damaging to many surface points of the site. Wave-propagation method, on the other hand, measures seismic velocities at different depths and stiffness profile (stiffness change with depth) can be obtained from the measured velocity data. The stiffness profile is often expressed by shear-wave (S-wave) velocity change with depth because S-wave velocity is proportional to the shear modulus. that is a direct indicator of stiffiiess. The crosshole and downhole method measures the seismic velocity by placing sources and receivers (geophones) at different depths in a borehole. Requirement of borehole installation makes this method also time-consuming, expensive, and damaging to the sites. Spectral-Analysis-of-Surface-Waves (SASW) method places both source and receivers at the surface, and records horizontally-propagating surface waves. Based upon the theory of surfacewave dispersion, the seismic velocities at different depths are calculated by analyzing the recorded surface-wave data. This method can be nondestructive to the sites. However, because only two receivers are used, the method requires multiple measurements with different field setups and, therefore, the method often becomes time-consuming and labor-intensive. Furthermore. the inclusion of noise wavefields cannot be handled properly, and this may cause the results by this method inaccurate. When multi-channel recording method is employed during the measurement of surface-waves, there are several benefits. First, usually single measurement is enough because multiple number (twelve or more) of receivers are used. Second, noise inclusion can be detected by coherency checking on the multi-channel data and handled properly so that it does not decrease the accuracy of the result. Third, various kinds of multi-channel processing techniques can be applied to f1lter unwanted noise wavefields and also to analyze the surface-wavefields more accurately and efficiently. In this way, the accuracy of the result by the method can be significantly improved. Fourth, the entire system of source, receivers, and recording-processing device can be tied into one unit, and the unit can be pulled by a small vehicle, making the survey speed very fast. In all these senses, multi-channel recording of surface waves is best suited for a routine method for geotechnical characterization in most of civil engineering works.

  • PDF

The cancellation performance of loop-back signal in wireless USN multihop relay node (무선 USN 멀티홉 중계 노드에서 루프백 신호의 제거 성능)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • This paper deals with the cancellation performance of loop back interference signal in the case of multihop relay of 16-QAM received signal at the USN radio network. For this, it is necessary to the exchange of information with long distance located station by means of the relay function between the node in the USN environment. In the relay node, the loop-back interference signal which the retransmitting signal is feedback to the receiver side due to the antenna of transmitter and receiver are co-used or very colsely located or using the nonlinear device. Due to this signal, the performance of USN system are degraded which are using the limited resource of frequency and power. For improve this, it is necessary to applying the adaptive signal processing algorithm in order to cancellating the unwanted loop-back interference signal at the frontend of receiver in relaying node, we can get the better system and multi hop performance. In the adaptive signal processing, we considered the 16-QAM signal which has a good spectral efficiency, firstly, than, the QR-Array RLS algorithm was used that has a fairly good convergence property and the solving the finite length problem in the H/W implementation. Finaly, we confirmed that the good elimination performanc was confirmed by computer simulation in the learing cuved and received signal constellation compared to the conventional RLS.

  • PDF

Estimation of Simulated Radiances of the OSMI over the Oceans (대양에서의 OSMI 모의 복사량 산출)

  • 임효숙;김용승;이동한
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.227-238
    • /
    • 1999
  • In advance of launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to prepare for data processing of OSMI. The data processing system for OSMI which is one of sensors aboard Korea Multi-Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is developed based on the SeaWiFS Data Analysis System (SeaDAS). Simulation of radiances requires information on the spectral band, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. This paper also describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment concentrations and to use the values and atmospheric components for calculation of total radiances. A modified Brouwer-Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment concentrations were used to compute water-leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI radiances for 412, 443, 490, 555, 765, 865nm was obtained. As expected, water-leaving radiances were only a small fraction (below 10%) of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is critical in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced data collection planning will be required to succeed in the mission of OSMI which is consistent monitoring of global oceans during three year mission lifetime.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

An Implementation of OTB Extension to Produce TOA and TOC Reflectance of LANDSAT-8 OLI Images and Its Product Verification Using RadCalNet RVUS Data (Landsat-8 OLI 영상정보의 대기 및 지표반사도 산출을 위한 OTB Extension 구현과 RadCalNet RVUS 자료를 이용한 성과검증)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.449-461
    • /
    • 2021
  • Analysis Ready Data (ARD) for optical satellite images represents a pre-processed product by applying spectral characteristics and viewing parameters for each sensor. The atmospheric correction is one of the fundamental and complicated topics, which helps to produce Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance from multi-spectral image sets. Most remote sensing software provides algorithms or processing schemes dedicated to those corrections of the Landsat-8 OLI sensors. Furthermore, Google Earth Engine (GEE), provides direct access to Landsat reflectance products, USGS-based ARD (USGS-ARD), on the cloud environment. We implemented the Orfeo ToolBox (OTB) atmospheric correction extension, an open-source remote sensing software for manipulating and analyzing high-resolution satellite images. This is the first tool because OTB has not provided calibration modules for any Landsat sensors. Using this extension software, we conducted the absolute atmospheric correction on the Landsat-8 OLI images of Railroad Valley, United States (RVUS) to validate their reflectance products using reflectance data sets of RVUS in the RadCalNet portal. The results showed that the reflectance products using the OTB extension for Landsat revealed a difference by less than 5% compared to RadCalNet RVUS data. In addition, we performed a comparative analysis with reflectance products obtained from other open-source tools such as a QGIS semi-automatic classification plugin and SAGA, besides USGS-ARD products. The reflectance products by the OTB extension showed a high consistency to those of USGS-ARD within the acceptable level in the measurement data range of the RadCalNet RVUS, compared to those of the other two open-source tools. In this study, the verification of the atmospheric calibration processor in OTB extension was carried out, and it proved the application possibility for other satellite sensors in the Compact Advanced Satellite (CAS)-500 or new optical satellites.

Automatic Detection of Stage 1 Sleep (자동 분석을 이용한 1단계 수면탐지)

  • 신홍범;한종희;정도언;박광석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.11-19
    • /
    • 2004
  • Stage 1 sleep provides important information regarding interpretation of nocturnal polysomnography, particularly sleep onset. It is a short transition period from wakeful consciousness to sleep. Lack of prominent sleep events characterizing stage 1 sleep is a major obstacle in automatic sleep stage scoring. In this study, we attempted to utilize simultaneous EEC and EOG processing and analyses to detect stage 1 sleep automatically. Relative powers of the alpha waves and the theta waves were calculated from spectral estimation. Either the relative power of alpha waves less than 50% or the relative power of theta waves more than 23% was regarded as stage 1 sleep. SEM (slow eye movement) was defined as the duration of both eye movement ranging from 1.5 to 4 seconds and regarded also as stage 1 sleep. If one of these three criteria was met, the epoch was regarded as stage 1 sleep. Results f ere compared to the manual rating results done by two polysomnography experts. Total of 169 epochs was analyzed. Agreement rate for stage 1 sleep between automatic detection and manual scoring was 79.3% and Cohen's Kappa was 0.586 (p<0.01). A significant portion (32%) of automatically detected stage 1 sleep included SEM. Generally, digitally-scored sleep s1aging shows the accuracy up to 70%. Considering potential difficulties in stage 1 sleep scoring, the accuracy of 79.3% in this study seems to be robust enough. Simultaneous analysis of EOG provides differential value to the present study from previous oneswhich mainly depended on EEG analysis. The issue of close relationship between SEM and stage 1 sleep raised by Kinnariet at. remains to be a valid one in this study.

Automated Velocity Measurement Technique for Unconsolidated Marine Sediment (해양퇴적물의 자동음파전달속도 측정장치)

  • Kim, Dae-Choul;Kim, Gil-Young;Seo, Young-Kyo;Ha, Deock-Ho;Ha, In-Chul;Yoon, Young-Seok;Kim, Jeng-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.400-404
    • /
    • 1999
  • The conventional mercury delay method to measure compressional wave velocity of unconsolidated sediment is inconvenient because the signal must be analyzed on the oscilloscope and the mercury column has to be calibrated between measurements. We developed an automated compressional wave velocity measurement technique by connecting an oscilloscope and a PC with a GPIB (General Purpose Interface Bus) card. The GPIB card buses signals from the oscilloscope to the PC where the signal from a sample is analyzed and compared to the input pulse thereby the compressional wave velocity of the sample is computed and recorded automatically. Differences between the mercury delay method and the automated measurement technique are negligible except the slightly greater velocity in the automated measurement technique. We concluded that the new technique can be used to measure the velocity for unconsolidated marine sediment. It also has an advantage to calculate sediment attenuation through the processing of waveform using the spectral ratio technique.

  • PDF

Band Selection Using L2,1-norm Regression for Hyperspectral Target Detection (초분광 표적 탐지를 위한 L2,1-norm Regression 기반 밴드 선택 기법)

  • Kim, Joochang;Yang, Yukyung;Kim, Jun-Hyung;Kim, Junmo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.455-467
    • /
    • 2017
  • When performing target detection using hyperspectral imagery, a feature extraction process is necessary to solve the problem of redundancy of adjacent spectral bands and the problem of a large amount of calculation due to high dimensional data. This study proposes a new band selection method using the $L_{2,1}$-norm regression model to apply the feature selection technique in the machine learning field to the hyperspectral band selection. In order to analyze the performance of the proposed band selection technique, we collected the hyperspectral imagery and these were used to analyze the performance of target detection with band selection. The Adaptive Cosine Estimator (ACE) detection performance is maintained or improved when the number of bands is reduced from 164 to about 30 to 40 bands in the 350 nm to 2500 nm wavelength band. Experimental results show that the proposed band selection technique extracts bands that are effective for detection in hyperspectral images and can reduce the size of the data without reducing the performance, which can help improve the processing speed of real-time target detection system in the future.

Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems (딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용)

  • Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1061-1073
    • /
    • 2017
  • In this study, images were classified using convolutional neural network (CNN) - a deep learning technique - to investigate the feasibility of information production through a combination of artificial intelligence and spatial data. CNN determines kernel attributes based on a classification criterion and extracts information from feature maps to classify each pixel. In this study, a CNN network was constructed to classify materials with similar spectral characteristics and attribute information; this is difficult to achieve by conventional image processing techniques. A Compact Airborne Spectrographic Imager(CASI) and an Airborne Imaging Spectrometer for Application (AISA) were used on the following three study sites to test this method: Site 1, Site 2, and Site 3. Site 1 and Site 2 were agricultural lands covered in various crops,such as potato, onion, and rice. Site 3 included different buildings,such as single and joint residential facilities. Results indicated that the classification of crop species at Site 1 and Site 2 using this method yielded accuracies of 96% and 99%, respectively. At Site 3, the designation of buildings according to their purpose yielded an accuracy of 96%. Using a combination of existing land cover maps and spatial data, we propose a thematic environmental map that provides seasonal crop types and facilitates the creation of a land cover map.