DOI QR코드

DOI QR Code

Estimation of Simulated Radiances of the OSMI over the Oceans

대양에서의 OSMI 모의 복사량 산출

  • 임효숙 (한국항공우주연구소 위성사업부) ;
  • 김용승 (한국항공우주연구소 위성사업부) ;
  • 이동한 (한국항공우주연구소 위성사업부)
  • Published : 1999.09.01

Abstract

In advance of launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to prepare for data processing of OSMI. The data processing system for OSMI which is one of sensors aboard Korea Multi-Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is developed based on the SeaWiFS Data Analysis System (SeaDAS). Simulation of radiances requires information on the spectral band, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. This paper also describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment concentrations and to use the values and atmospheric components for calculation of total radiances. A modified Brouwer-Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment concentrations were used to compute water-leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI radiances for 412, 443, 490, 555, 765, 865nm was obtained. As expected, water-leaving radiances were only a small fraction (below 10%) of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is critical in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced data collection planning will be required to succeed in the mission of OSMI which is consistent monitoring of global oceans during three year mission lifetime.

발사 이전에 OSMI 모의 복사량을 산출함은 실제로 관측할 자료를 추정하고, 자료처리를 위한 준비에 매우 유용하다. 1999년 발사예정인 다목적 실용위성의 탑재체 중의 하나인 OSMI 자료처리 시스템은 SeaWIFS 자료처리 시스템을 OSMI에 맞추어 재개발된 것이다. 모의 복사량 계산은 OSMI 센서의 파장대역 및 스캔방식, 다목적 실용위성의 궤도에 관한 정보가 고려되어야 한다. 본 연구에서는 대양에서의 OSMI 모의 복사량을 산출하기 위해 CZCS에서 관측한 엽록소를 다목적 실용위성이 관측한다는 가정을 하게 되었다. 궤도 예측에는 수정된 Brouwer-Lyddane 모델이, water-leaving 복사량을 산출하기 위해 CZCS 엽록소 농도가, OSMI가 관측할 대기에 의한 복사량 계산에는 여러 가지 복사모델이 이용되었다. OSMI의 412, 443, 490, 555, 765, 865nm 6가시광선 파장대역에서 모의 복사량을 산출하였다. 예상대로, 총 복사량 중 water-leaving 복사량은 아주 작으며 (10% 미만), 태양해면반사에 의한 영향은 태양 적위 근처에서 관측된다. 그러므로 대기보정은 총 복사량으로부터 엽록소 농도를 계산하는데 매우 중요하다. 태양해면반사에 의해 영향을 받는 자료는 사용할 수 없으므로 OSMI 임무 기간내에 지속적인 전구 해양관측을 위해서는 체계적인 자료수집 계획이 요구된다.

Keywords

References

  1. 1999년도 대한원격탐사학회 춘계학술대회 논문집 OSMI 모의 태양반사 복사량 김용승;임효숙;이동한
  2. 2. Limnol. and Oceanography v.27 Bio-optical classification and model of natural waters Baker, K.S.;R.C. Smith
  3. J. Mar. Res. v.44 Measurement of the roughness of the sea surface from photographs of the sun's glitter Cox, C.;W. Munk
  4. J. Geophy. Res. v.102 Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction Fukushima, H.;M. Toratani
  5. Applied Optics v.33 Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm Gordon, H.R.;M. Wang
  6. Applied Optics v.29 Radiometric considerations for ocean color remote sensors Gordon, H.R.;M. Wang
  7. Applied Optics v.28 Aerosol analysis with Coastal Zone Color Scanner: Asimple method for including multiple scattering effects Gordon, H.R.;M. Wang;D.J. Castano
  8. J. of Geophys. Res. v.93 A semianalytic radiance model of ocean color Gordon, H.R.;M. Wang;O.B. Brown;R.H. Evans;J.W. Brown;R.C. Smith;K.S. Baker;D.K. Clark
  9. Applied Optics v.28 Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner Gordon, H.R.;M. Wang;J.W. Brown;R.H. Evans
  10. Applied Optics v.22 Phytoplankton pigment concentratins in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates Gordon, H.R.;M. Wang;D.K. Clark;J.W. Brown;O.B. Brown;R.H. Evans;W.W. Broenkow
  11. SeaWiFS Technical Report Series v.9 The simulated SeaWiFS Data set, Version 1. Gregg, W.W.;F.C. Chen;A.L. Mezaache;J.D. Chen;J.A. Whiting
  12. Limnol. and Oceanography v.35 A simple spectral solar irradiance model for cloudless maritime atmospheres Gregg, W.W.;F.C. Chen;A.L. Mezaache;J.D. Chen;J.A. Whiting;K.L. Carder
  13. Geophys. Biokimatol. v.B14 A new table and approximate formula for relative optical air mass Kasten, F.
  14. Journal of the Korean Society of Remote Sensing v.14 no.3 Global patterns of pigment concentration, cloud cover, and sun glint: Application to the OSMI data collection planning Kim, Y.;C. Kang;H.-S. Lim https://doi.org/10.7780/kjrs.1998.14.3.277
  15. NASA Reference Publication 1331 Sea Track - Ground station orbit prediction and planning software for sea-viewing satellites Lambert, K.S.;W.W. Gregg;C.M. Hoisington;F.S. Patt
  16. SeaWiFS/SeaDAS Tutorials Atmospheric correction and other correction algorithms McClain, C.R.;J. Comiso;R. Fraser;J. Firestone;B. Schieber;E. Yeh;K. Arrigo;C. Sullivan
  17. NASA Technical Memorandum 104566 v.28 SeaWiFS Algorithm Part 1 McClain, C.R.;J. Comiso;R. Fraser;J. Firestone;B. Schieber;E. Yeh;K. Arrigo;C. Sullivan;K. Arrigo;W.E. Esias;M. Darzi;F.S. Patt;R.H. Evans;J.W. Brown;C.W. Brown;R.A. Barnes;L. Kumear
  18. Development in Atmospheric Science v.5 Radiative processes in meteorology and climatology Paltridge, G.W.;C.M.R. Platt
  19. NASA Technical Memorandum 104566 v.11 Analysis of selected orbit propagation models for the SeaWiFS Mission Patt, F.S.;C.M. Hoisington;W.W. Gregg;P.L. Coronado
  20. 6S User Guide(Version 2) Vermote, E.;D. Tanre;J.L. Deuze;M. Herman;J.J. Morcrette