• 제목/요약/키워드: spectral model

검색결과 1,311건 처리시간 0.023초

인간의 청각시스팀에 기반한 음성전처리기의 설계점에 대하여 (On the Design Considerations of Auditory Preprocessors Based on Human Auditory System)

  • 길이만;이영직
    • 전자통신동향분석
    • /
    • 제8권2호
    • /
    • pp.69-91
    • /
    • 1993
  • In the conventional speech processing, the technique of FFT(Fast Fourier Transform) is usually applied to the finite number of samples within the window of specified length using the fixed sampling rate. In this case, the temporal resolution is dependent upon the length of window while the spectral resolution is dependent upon the number of samples within the window. Thus, once the temporal resolution is determined the spectral resolution is also determined or vice versa. To resolve this type of dilemma, a new type of bank-filter similar to the characteristics of cochlear model needs to be considered. Furthermore, wide dynamic range of cochlea certainly helps the stable extraction of speech features. In the paper, the human auditory system will be briefly introduced and previous works on auditory preprocessors based on cochlear model will be reviewed. As a conclusion, the design considerations of auditory preprocessors based on cochlear model will be addressed.

정현파 모델을 이용한 2.4kbps 음성부호화 알고리즘 (2.4kbps Speech Coding Algorithm Using the Sinusoidal Model)

  • 백성기;배건성
    • 한국통신학회논문지
    • /
    • 제27권3A호
    • /
    • pp.196-204
    • /
    • 2002
  • STC(Sinusoidal Transform Coding) 방식은 주파수 영역에서 음성신호의 스펙트럼 피크치들을 정현파로 모델링하여 합성하는 음성부호화 방식을 말한다. 저전송률 STC 방식에서는 스펙트럼의 모든 피크를 이용하는 대신, 기본 주파수와 고조파에 해당하는 스펙트럼 포락선에서의 크기와 그때의 위상을 이용하여 음성을 합성한다. 본 논문에서는 정현파 모델에 기반한 2.4kbps 음성부호화 알고리즘을 제안한다. 피치정보는 모든 스펙트럼 피크를 사용한 합성음과 선택된 주파수와 고조파를 이용한 합성음과의 평균자승에러를 이용하여 추정하고, 위상정보는 여기신호 펄스의 시작시기를 나타내는 onset time과 성도 모델 전달함수의 위상을 이용하여 얻는다. 크기정보는 SEEVOC 알고리즘과 선형예측계수를 이용하여 추정한다. 실험결과, 합성음의 스펙트럼 특성은 원음성의 포만트 정보를 대부분 가지고 있으며, 위상정보도 원음성의 위상을 잘 따라감을 확인하였다. 합성음의 음질평가를 위해서 informal한 MOS(Mean Opinion Score) 테스트를 시행하였으며, 2.0kbps의 HVXC와 비교하여 대체적으로 MOS 3.1 이상의 음질을 얻을 수 있었다.

Sea State Hindcast for the Korean Seas With a Spectral Wave Model and Validation with Buoy Observation During January 1997

  • Kumar, B. Prasad;Rao, A.D.;Kim, Tae-Hee;Nam, Jae-Cheol;Hong, Chang-Su;Pang, Ig-Chan
    • 한국지구과학회지
    • /
    • 제24권1호
    • /
    • pp.7-21
    • /
    • 2003
  • The state-of-art third generation wave prediction model WAM was applied to the Korean seas for a winter monsoon period of January 1997. The wind field used in the present study is the global NSCAT-ERS/NCEP blended winds, which was further interpolated using a bi-cubic spline interpolator to fine grid limited area shallow water regime surrounding the Korean seas. To evaluate and investigate the accuracy of WAM, the hindcasted wave heights are compared with observed data from two shallow water buoys off Chil-Bal and Duk-Juk. A detailed study has been carried with the various meteorological parameters in observed buoy data and its inter-dependency on model computed wave fields was also investigated. The RMS error between the observation and model computed wave heights results to 0.489 for Chil-Bal and 0.417 for Duk-Juk. A similar comparison between the observation and interpolated winds off Duk-Juk show RMS error of 2.28 which suggest a good estimate for wave modelling studies.

Construction of a Ginsenoside Content-predicting Model based on Hyperspectral Imaging

  • Ning, Xiao Feng;Gong, Yuan Juan;Chen, Yong Liang;Li, Hongbo
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.369-378
    • /
    • 2018
  • Purpose: The aim of this study was to construct a saponin content-predicting model using shortwave infrared imaging spectroscopy. Methods: The experiment used a shortwave imaging spectrometer and ENVI spectral acquisition software sampling a spectrum of 910 nm-2500 nm. The corresponding preprocessing and mathematical modeling analysis was performed by Unscrambler 9.7 software to establish a ginsenoside nondestructive spectral testing prediction model. Results: The optimal preprocessing method was determined to be a standard normal variable transformation combined with the second-order differential method. The coefficient of determination, $R^2$, of the mathematical model established by the partial least squares method was found to be 0.9999, while the root mean squared error of prediction, RMSEP, was found to be 0.0043, and root mean squared error of calibration, RMSEC, was 0.0041. The residuals of the majority of the samples used for the prediction were between ${\pm}1$. Conclusion: The experiment showed that the predicted model featured a high correlation with real values and a good prediction result, such that this technique can be appropriately applied for the nondestructive testing of ginseng quality.

A three-dimensional two-hemisphere model for unmanned aerial vehicle multiple-input multiple-output channels

  • Zixu Su;Wei Chen;Changzhen Li;Junyi Yu;Guojiao Gong;Zixin Wang
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.768-780
    • /
    • 2023
  • The application of unmanned aerial vehicles (UAVs) has recently attracted considerable interest in various areas. A three-dimensional multiple-input multiple-output concentric two-hemisphere model is proposed to characterize the scattering environment around a vehicle in an urban UAV-to-vehicle communication scenario. Multipath components of the model consisted of lineof-sight and single-bounced components. This study focused on the key parameters that determine the scatterer distribution. A time-variant process was used to analyze the nonstationarity of the proposed model. Vital statistical properties, such as the space-time-frequency correlation function, Doppler power spectral density, level-crossing rate, average fade duration, and channel capacity, were derived and analyzed. The results indicated that with an increase in the maximum scatter radius, the time correlation and level-crossing rate decreased, the frequency correlation function had a faster downward trend, and average fade duration increased. In addition, with the increase of concentration parameter, the time correlation, space correlation, and level-crossing rate increased, average fade duration decreased, and Doppler power spectral density became flatter. The proposed model was compared with current geometry-based stochastic models (GBSMs) and showed good consistency. In addition, we verified the nonstationarity in the temporal and spatial domains of the proposed model. These conclusions can be used as references in the design of more reasonable communication systems.

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

B-스프라인 곡선 모델링 및 메시-스펙트럼 변환을 이용한 프린트-스캔에 강인한 곡선 워터마킹 (Print-Scan Resilient Curve Watermarking using B-Spline Curve Model and its 2D Mesh-Spectral Transform)

  • 김지영;이해연;임동혁;류승진;최정호;이흥규
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.307-314
    • /
    • 2008
  • 본 논문에서는 이미지의 선에 대하여 워터마크 정보를 삽입 및 추출하는 기술을 제안한다. 기존의 워터마킹 기술이 이미지의 픽셀 밝기값을 이용하는 것과 달리 제안된 알고리즘은 이미지의 곡선들을 B-스프라인 곡선으로 모델화하여 B-스프라인 제어점을 추출하고 이를 주파수 영역으로 변환하여 워터마크를 삽입한다. 제어점에 Delaunay 삼각화를 적용하여 메시를 생성하고, 메시-스펙트럼 분석을 통하여 주파수 영역의 메시-스펙트럼 계수를 계산한다. 워터마크는 이 계수의 중간 주파수 성분에 스프레드 스펙트럼 방식으로 삽입한다. 워터마크가 삽입된 계수를 메시-스펙트럼 역변환을 통하여 제어점을 계산하고 이를 통하여 워터마크가 삽입된 B-스프라인 곡선을 재구성할 수 있다. 삽입된 워터마크는 원본 선 이미지를 사용하여 검출이 이루어진다. 먼저 대상 선 이미지를 B-스프라인 모델화하고 곡선의 굴곡점을 이용하여 원본 선 이미지와 동기화를 수행한다. 동기화된 이미지에서 워터마크 삽입과정과 같이 메시-스펙트럼 계수를 추출하고 원본 메시-스펙트럼 계수와의 차이값을 계산하여 워터마크를 추출한다. 마지막으로 랜덤 워터마크와 추정된 워터마크의 상관 계수를 계산하여 삽입된 워터마크를 확인할 수 있다. 실험을 통하여 제안된 워터마킹 알고리즘이 기존 알고리즘보다 기하학적 공격과 프린트-스캔 공격에 강인함을 보였다.

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

내열성 세라믹스 재료의 분광복사특성 (Spectral Radiative Characteristics of Heat Resisting Ceramics Materials)

  • 상희선
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.35-40
    • /
    • 2001
  • A spectral measurement system for reflection and transmission properties by using an optical fiber and an ellipsoidal mirror was newly developed. The hemispherical reflectance and transmittance spectra of several heating resisting ceramics materials were measured from visible to middle infrared region. The directional characteristics of reflection and transmission were also investigated in consideration of the absorptance. The measured data were analyzed by using a four flux model of radiation transfer, The radiation properties could be estimated by the obtained scattering and absorption coefficient spectra.

  • PDF