
Introduction

Often referred to as “the king of all herbs”, ginseng is a 

fleshy root that mainly grows in cold regions. Ginseng is a 

common tonic herb, with the most effective component of 

ginseng being saponin. According to the “Chinese Pharma-

copoeia”, the content of ginsenosides generally plays a 

major role in assessing the quality of ginseng. However, 

the ginsenoside content alone is not enough to fully evaluate 

the quality of ginseng, and the red color of ginseng is also 

used as an indicator of ginseng quality (Raksakantong et 

al., 2012; Ning and Han, 2013).

Testing for saponins, the major component of ginseng, 

still mostly relies on chemical analyses, which mainly 

include a thin layer chromatography-colorimetric method, 

an ultra-high-performance liquid chromatography UV 

detection method, a light-scattering detection method, 

and a liquid chromatography mass spectrometry method. 

These methods require chemical pretreatment of samples, 

a long timescale to perform, and introduce chemical 

contamination into the samples. In addition, these 

methods include a high analysis cost and cannot be used 

for real-time on-line analysis of large quantities of 

samples (Ha et al., 2014). Recently, spectral technology 

has been used in major saponin content analysis and 

prediction. For example, Zhang et al. (2015) used near- 

infrared spectroscopy (NIRS) for rapid determination of 

ginsenoside Rg1 and Re in the Chinese patent medicine 

Naosaitong pill. Li et al. (2018) studied the method of 

saponin content prediction in soapnut (Sapindus 

mukorossi Gaertn.) fruit by NIRS.
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Spectral analysis technology has many advantages 

including fast analysis capability, being nondestructive, 

providing good reproducibility, requiring no need for the 

pretreatment of samples, enabling easy on-line analysis 

implementation, and easy operation. Due to these advantages, 

spectral analysis technology has also been widely used in 

civil sectors; for example, in the field of agriculture and 

food industry, spectral analysis technology has been used 

for the qualitative and quantitative analysis of food 

components, and has also been used in vegetation and 

pest detection systems as well as in many other forms of 

testing (Xin et al., 2007). Studies testing and assessing the 

prediction models have shown that the model assessment 

data demonstrate good performance, and there is no 

significant difference between spectral analysis results 

and values predicted by the other models that has 

adequately proved that the spectral detection technology 

can be used as a rapid nondestructive testing technology 

(Windham et al., 2003). Spectra are generated in the 

process when molecules transition from a lower energy 

level to a higher energy level, which is well-explained by 

quantum mechanics. The transition process records the 

absorption of H-containing groups, such as CH-, -OH, and 

NH-. Evidence suggests that the absorption of H-containing 

groups differs in various physical and chemical environ-

ments. NIRS can reveal the structural and compositional 

information of samples, which makes it suitable for 

detecting the components of H-containing organic 

compounds. Ginseng is rich in saponins, which contain H 

groups, and therefore NIRS can be used to perform 

quality testing (Xing and Chang, 2009; Tan et al., 2015; 

Gong et al., 2014).

The shortwave band of hyperspectral imaging spec-

troscopy is situated between the visible light band and 

the long-wavelength band. According to the principle of 

shortwave infrared imaging spectroscopy, it possesses a 

strong advantage in terms of stability and image quality 

compared to other wave bands (Xu and Ying, 2002). With 

the increasing development of economics and technology, 

the requirement for imaging technology in spectral 

detection is also increasing. Visible and infrared wave 

band spectral imaging technology has improved locally 

and abroad, whereas the development of shortwave band 

imaging technology still requires further development. 

Domestic scholars have therefore intensified the study of 

this aspect in recent years. Significant progress has been 

made in digitalization for use in the agricultural industry 

and other areas (Cai et al., 2011; Wang et al., 2010), 

leading to the study of preprocessing methods of spectral 

data. This technology has great developmental prospects 

and value for civil applications, industry, military appli-

cations, and other sectors (He et al., 2008; Sun et al., 

2016). In this study, we apply shortwave hyperspectral 

imaging technology to examine ginseng powder, analyze 

the hyperspectral imaging characteristics of the gin-

senosides, and establish a ginsenoside content prediction 

model.

Materials and methods

Experimental materials and treatment 

methods

Six-year-old artificially cultivated ginseng from the 

same source in the Changbai Mountains, Jilin, was used in 

this experiment. The ginseng samples selected for this 

experiment were all healthy and without defects. 2 g of 

ginseng root was selected, washed, dried, and pulverized 

into 36 powder samples. To ensure accurate represen-

tation by the test samples, the total saponin content of the 

ginseng powder samples should exhibit a certain 

gradient. The total saponin content was found to be 

between 57.52 mg/g and 63.96 mg/g, with an average 

value of 60.64 mg/g. The ginseng was pulverized into 

powder by a LD-Y400A high-speed universal pulverizer 

(Shanghai Dingshuai Electric Co., Ltd.) at a speed of 

25000 rotations/min with each crushing process lasting 

1 min, producing a particle diameter of 80 µm. The 

ginseng powder was then divided into a test set and a 

prediction modeling set to facilitate the spectrum 

acquisition and model construction described in the 

following.

Spectral data collection

Spectral acquisition equipment
In this study, a shortwave imaging spectrometer 

(Changchun Institute of Optics, Fine Mechanics and 

Physics, Chinese Academy of Sciences) was used to 

collect the spectral data. This spectrometer was equipped 

with a Sony second-generation ILX511BCCD, with a 

wavelength range of 1000 nm–2500 nm, spectral 

resolution of 10 nm, 256 wave bands, an integration time 

of 65 ms, spatial resolution of 1 mrad, 320 space- 

dimension pixels each measuring 30 μm × 30 μm, 14-bit 
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digitization, and a frame rate of 10 fps - 100 fps. The light 

source was a 150-W halogen lamp, and the volume of the 

instrument components were as follows: the detector 

head was 392 mm × 170 mm × 151 mm, the power source 

was 120 mm × 240 mm × 70 mm, and the controller was 

260 mm × 260 mm × 95 mm. This spectrometer is 

particularly suited for applications that require high- 

speed image processing. The assembled shortwave 

imaging spectral detection system is shown in Figure 1.

Spectral characteristics of image acquisition
In general, spectral acquisition using an imaging device 

first obtains the image of the test sample from which 

further spectral information of each point can then be 

obtained, which means that spectral information of 

multiple points can be obtained from a single scan. If an 

imaging device is not used, multiple scans are needed to 

obtain the spectral information of multiple points. 

Therefore, if there are many points required in order to 

acquire adequate spectral information, the use of a 

spectral imaging device can save a lot of time and effort. 

The image obtained in the experiment is shown in Figure 2.

(3) Ginseng spectral acquisition

First, the light source of the spectral acquisition system 

is switched on for preheating and a series debugging 

processes is performed on the acquisition system to 

ensure the adequate stability of the experimental en-

vironment. The 36 ginseng powder samples prepared in 

advance were numbered and grouped; 24 were selected 

as test samples while the remaining 12 samples were 

used as model prediction samples. The samples were 

placed sequentially in containers of radius 1 cm on the 

lifting platform of the shortwave imaging spectrum- 

acquisition instrument, with the platform adjusted so 

that the distance between the sample and the light source 

was in a suitable position. Once the test environment was 

stabilized, the spectral information obtained from the 

stable sample was stored in the form of images. ENVI 

spectral acquisition software was required to extract the 

spectral information from the image information. ENVI 

software features a modular design, and possesses 

complete set of remote sensing image-processing 

functions as well as an abundant secondary development 

function library, comprising a comprehensive image- 

processing system. When the obtained map information 

is input to the ENVI software, five 3 mm × 3 mm regions 

are extracted from each sample image and the corres-

ponding spectral image information in the 900 nm - 2500 

nm wave band of the sample map can be obtained (Liang 

et al., 2010). Once the spectra of the samples are successfully 

acquired, the spectra are collated by comparing the 

ginseng powder sample and the white board using six 

points of ginseng power samples to obtain average values. 

The process of acquiring a sample spectrum and spectral 

image information of certain points is shown in Figure 3 

and Figure 4, respectively. The functional C=O, 2C-H, and 

O-H groups show strong stretching vibration in the 2100 

nm - 2500 nm region.

Spectral data preprocessing

Spectral data preprocessing software
The spectral information obtained in this study 

requires the use of the Unscrambler 9.7 stoichiometry 

software developed by the CAMO Corporation. Unscrambler 

9.7 is a multi-featured data analysis program mainly used 

for principal component analysis, regression analysis, 

Figure 1. Diagram of the shortwave imaging spectroscopy detection 
system: (1) Housing, (2) Computer system, (3) Light source, (4) 
Sample stage, (5) Slide rail, (6) Imaging spectrometer.

Figure 2. Image acquired by the spectral imaging spectrometer: (1) 
Gray board, (2) Ginseng powder, (3) White board acting as a 
reference.
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discriminant analysis, prediction, and experimental 

design to facilitate the analysis and interpretation of 

large amounts of data. The software is also compatible 

with Microsoft Office software for data transmission 

purposes and can directly transfer raw data so that it can 

be directly used to generate line graphs, histograms, and 

matrices. Aside from simple calculation and sorting 

functions, this software also provides some commonly 

used data-preprocessing functions as well as correction 

methods including multiple linear regression, principal 

component regression, partial least squares regression, 

and other quantitative analysis methods. Unscrambler 

9.7 can also perform soft independent modeling by class 

analogy and partial least squares discriminant analysis 

(PLS-DA), two qualitative analysis methods. Using these 

methods, the data import, principal component analysis, 

cross-validation, and regression equation formulation 

were carried out and the ginsenoside PLS model was 

established (R. Glenn and Glenn, 2005; Liu and Chen, 

2014).

Spectral data preprocessing and modeling 

analysis
After the obtained spectral data were averaged, the 

final spectral data were input to the Unscrambler 9.7 

software and subjected to noise reduction preprocessing, 

optical path correction preprocessing, differential pre-

processing, and combination preprocessing, respectively. 

It was found after the two noise reduction preprocessing 

functions of moving the average and S-G smoothing that 

the model was not as suitable as that without the noise 

reduction processing, suggesting that the built-in 

noise-reduction function of the ENVI spectral acquisition 

software effectively eliminates the effect of noise so that 

there is no need for additional noise reduction during 

preprocessing. Although the coefficient of determination 

is higher when performing standard normal variable 

(SNV) transformation during optical path correction 

preprocessing, it was found after establishing the PLS 

model that the root mean squared error of calibration 

(RMSEC) and the root mean squared error of prediction 

(RMSEP) did not meet the specifications, suggesting that 

the prediction was not sufficiently accurate and thus 

required further processing (Liu et al., 2017; Wu and Sun, 

2016). The established PLS model, which was implemented 

after two differential preprocessing methods, had a 

similar effect as the optical path correction preprocessing 

described above. To develop a more ideal PLS model of 

ginsenoside content with improved prediction per-

formance, SNV transformation and multiple scattering 

correction, two different optical path correction pre-

processing methods, were combined with first-order and 

second-order differentials, respectively. The results of 

the established models after these four combinations of 

preprocessing methods were recorded.

Determination of the ginsenoside content
A ginsenoside reference sample of 10.5 mg was 

accurately weighed and transferred to a 10-ml volumetric 

flask, dissolved in methanol, and diluted to the specified 

concentration. Different volumes of the ginsenoside Re 

control solution, with deionized water used as a blank, 

were combined with 0.5 ml of 5% (w/v) vanillin glacial 

acetic acid solution and 5.0 ml of 70% (w/v) sulfuric acid 

Figure 3. Spectrum acquisition process.

Figure 4. Spectral information of samples.
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aqueous solution. The solution was placed in a 60℃ 

water bath for 15 min that was then cooled for 10 min, 

and the solution was then left at room temperature for 

another 10 min. A TU-1810 UV-Vis spectrophotometer 

was used to measure the absorbance at 544 nm, and the 

standard curve was plotted. The obtained regression 

equation is Y = 0.47998 + 2.83571X with R2 = 0.99860, 

and the corresponding total ginsenoside content was 

calculated from the standard equation (Ha et al., 2014).

Results and discussion

Prediction and analysis of the saponin 

concentration of ginseng powder

Sample saponin concentration measurement results
Tables 1 and 2 display the statistical results of the 

saponin concentrations of the test set and modeling set of 

ginseng powder samples. From this data, the total saponin 

concentration values of the 24 ginseng powder samples 

in the test set are between 58.48 mg/g and 63.96 mg/g, 

with an average of 60.84 mg/g and a standard error of 

1.20 mg/g. The total saponin concentration values of the 

12 ginseng powder samples in the prediction set are 

between 59.85 mg/g and 63.16 mg/g, with a standard 

error of 1.05 mg/g. 

Analysis of preprocessing results of total saponin 

concentration
The obtained visible/near-infrared spectral reflectance 

data of the ginseng powder were averaged and then 

processed by noise reduction, optical path correction, 

and differential processing, and then the partial least 

squares regression method was used to establish the 

model according to the saponin concentration level. 

Table 3 presents the statistical figures of the modeling 

Table 1. Total saponin contents of samples

Number Absorbance
Concentration 

mg/mL

Concentration 

mg/g
Number Absorbance

Concentration 

mg/mL

Concentration 

mg/g

1 0.66 0.063483 62.26409 19 0.755 0.096985 60.03994

2 0.665 0.065246 60.41019 20 0.754 0.096632 61.81072

3 0.759 0.098395 63.95682 21 0.890 0.144592 59.98458

4 0.647 0.058899 60.28424 22 0.823 0.120964 60.62687

5 0.722 0.085347 60.4757 23 0.752 0.095927 62.35229

6 0.731 0.088521 61.53868 24 0.851 0.130838 59.94502

7 0.809 0.116027 60.4178 25 0.84 0.126959 60.5236

8 0.71 0.081115 62.72507 26 0.694 0.075473 60.05756

9 0.893 0.14565 60.67223 27 0.707 0.080058 59.93741

10 1.039 0.197136 59.1383 28 0.845 0.128723 60.6697

11 1.017 0.189378 60.0955 29 0.725 0.086405 63.16336

12 0.895 0.146355 60.13067 30 0.716 0.083231 60.10038

13 0.804 0.114264 60.2717 31 0.748 0.094516 60.43541

14 0.791 0.10968 60.29185 32 0.781 0.106153 62.99965

15 0.723 0.0857 59.90492 33 0.75 0.095221 60.89385

16 0.714 0.082526 60.64195 34 0.768 0.101569 61.0198

17 0.722 0.085347 60.4757 35 0.733 0.089226 60.99712

18 0.689 0.07371 60.91146 36 0.728 0.087463 59.85102

Table 2. Statistics of ginseng powder saponin concentration

Quality parameters
Sample 

number

Minimum value 

mg/g

Maximum 

value mg/g

Average value 

mg/g

Standard error 

mg/g

Total saponin concentration of ginseng
Test set 24 58.48 63.96 60.84 1.20

Prediction set 12 59.85 63.16 60.89 1.05

Means with different letters significantly differ by Duncan’s multiple-range test (p < 0.05).



Ning et al. Construction of a Ginsenoside Content-predicting Model based on Hyperspectral Imaging
Journal of Biosystems Engineering • Vol. 43, No. 4, 2018 • www.jbeng.org

374

results after the preprocessing of the various data.

As seen from Table 3, similar to the modeling results 

using the degree of red coloration of the ginseng powder, 

after the two noise reduction processing functions of 

moving average and S-G smoothing, the model was found 

to be not as effective as the model that did not use noise 

reduction processing, confirming the conclusion reached 

earlier and suggesting that the built-in noise-reduction 

and scattered light correction functions of the ENVI 

spectral acquisition software can eliminate the impact of 

noise to sufficient extent. Therefore, when the spectral 

information is preprocessed there is no need to perform 

further noise reduction processing.

Among the optical path correction preprocessing 

methods, SNV transformation has a higher coefficient of 

determination of 0.9822, a lower RMSEC of 0.1595, and a 

lower RMSEP of 1.3642. In the PLS model established by 

the SNV transformation, RMSEP (1.3642) > RMSEC 

(0.1595), suggesting that its prediction performance is 

still not sufficiently adequate, and thus requires further 

processing.

When differential processing is used to preprocess the 

data, although the established PLS model has a higher 

coefficient of determination after the two differential 

processing cycles, the RMSEP and the RMSEC values are 

similar and the situation where RMSEC is smaller than 

RMSEP also occurs. To develop a more ideal PLS model 

for the total saponin concentration, a combination of the 

optical path correction preprocessing method and 

differential preprocessing method was investigated. Two 

optical path correction processing methods with 

different algorithms, SNV transformation and multiple 

scattering correction, were combined with first-order 

and second-order differentials, respectively. The results 

of the established models after the preprocessing of the 

four combinations of methods were observed and 

examined.

Based on the obtained results of the evaluation index 

from the various models in Table 3, we find a relatively 

higher coefficient of determination of 0.9972 for the 

spectral data preprocessing method combining the SNV 

transformation with the second-order differential (SD + 

SNV), while the values of RMSEC (0.0628) and RMSEP 

(1.5268) are relatively smaller. The prediction perfor-

mance of the model is more prominent, and provides a 

better result. Therefore, in terms of the total saponin 

concentration in the ginseng powder, the optimal spectral 

data preprocessing method is the combination of the SNV 

transformation with the second-order differential (SD + 

SNV).

Analysis of the results of the total saponin 

concentration prediction model
After the spectral data are preprocessed by the SD + 

SNV combination, PLS modeling of the total saponin 

concentration was performed. First, the number of principal 

components was determined, and in order to avoid 

omission, the absolute values of the prediction residuals 

of various numbers of components were obtained first 

while 10 principal components were initially selected. 

After SNV transformation and 25-point smoothing second- 

order differential preprocessing was performed on the 

spectral data, PLS modeling was carried out with the 

subsequent data. The corresponding histogram of the 

Table 3. Statistics of preprocessing results of the spectral data for saponin concentration

Preprocessing method Number of factors R² RMSEC RMSEP 

None 10 0.9056 0.3672 1.4327

Noise reduction

preprocessing

Moving average 10 0.8786 0.4164 1.4415

S-G smoothing 10 0.9039 0.3706 1.5218

Optical path 

correction 

preprocessing

MSC 10 0.9629 0.2301 1.6981

SNV 10 0.9822 0.1595 1.3642

Normalize 10 0.9365 0.3013 1.6160

Differential

preprocessing

FD 9 0.9936 0.0953 1.6391

SD 8 0.9953 0.0823 1.5747

Combination 

preprocessing

FD+MSC 9 0.9963 0.0490 1.5030

FD+SNV 8 0.9913 0.1115 1.5355

SD+SNV 8 0.9972 0.0628 1.5268

SD+MSC 8 0.9952 0.0832 1.4751
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number of principal components and the absolute values 

of the prediction residuals are shown in Figure 5.

As shown in Figure 5, the relationship between the 

number of principal components and the absolute value 

of the prediction residual is an evidently decreasing 

function. When the number of principal components is 8, 

the absolute value of the prediction residual is the 

smallest so the established prediction model is more 

accurate and the prediction ability is stronger. Therefore, 

the principal component number of the ideal model is 

determined to be 8.

With the determined principal component number set 

as a parameter, a PLS model of the total saponin concen-

tration was established. Its model prediction value, as 

well as the actual value results, is shown in Figure 6. This 

established PLS model was used to predict the total 

saponin concentration of the 12 ginseng powder samples 

in the prediction set, and the graphs corresponding to the 

predicted values and actual values of the test set samples 

along with the prediction set samples are shown in 

Figures 6 and 7.

It can be seen from Figure 6 and Figure 7 that the 

coefficient of determination of the ginsenoside is 0.9972, 

the RMSEC value is 0.0627, the determination coefficient 

R² of the prediction model is 0.9999, the RMSEC value of 

0.0041 < RMSEP of0.0043, and the bias is -0.5142. It is 

concluded that the prediction results of the model are 

reasonable, and that the prediction accuracy is sufficiently 

adequate.

The saponin prediction model is expressed as:









⋯






            (1)

Where Y is the ginsenoside concentration in mg/g and 

X1... X1231 represent the saponin spectral reflectance 

values at 1231 wavelength points.

Table 4 presents the statistics of the prediction values 

for the ginseng powder samples in the prediction set 

obtained with the PLS prediction model of the total 

saponin concentration and their real values.

Figure 5. Histogram of the number of principal components of the 
total saponin concentration of ginseng powder and the absolute 
values of prediction residuals.

Figure 6. Scatter plot of the predicted values and actual values of 
the test set.

Figure 7. Scatter plot of the predicted values and actual values of 
the prediction set.

Figure 8. Scatter plot of the distribution of residuals of the total 
saponin concentration in the prediction set samples.
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According to the statistical data, the residual distribution 

graph of the predicted values and real values of the 12 

ginseng samples was plotted and is shown in Figure 8.

From Table 4 and Figure 8, the residual values of the 

majority of the samples are within ±2 with a corres-

ponding error of less than 3%. By comparison, in 

agricultural product-sorting, any product with a relative 

error less than 5% meets the actual production require-

ments. Each point representing a residual value is 

randomly distributed above and below the horizontal 

line on which the residual is equal to 0, indicating that the 

ginseng shortwave imaging spectral detection experiment 

exhibits a relatively good statistical fit, thereby meeting 

practical detection requirements. Therefore, this model 

satisfies real production requirements and can be used as 

a grading reference for the total saponin concentration of 

ginseng powder. Taking into account the previous 

analysis and evaluation of the determination coefficient, 

RMSEC value, residual distribution, relative error, and 

other detection indicators, it is found that the predicted 

values of the prediction set samples demonstrate a high 

correlation with the real values and the two sets of values 

are similar, meaning that the prediction model exhibits 

good prediction performance for reliably predicting 

ginsenoside concentration.

Conclusion

(1) In this paper, we used a shortwave infrared imaging 

spectrometer combined with ENVI spectral acquisition 

software and Unscrambler 9.7 stoichiometry software 

to perform on-line nondestructive testing of ginseng 

quality. We used the imaging and spectral detection 

technology to obtain ginseng map information. The 

spectral information was extracted to form the 

spectral reflectance information map that could be 

examined, and then the obtained spectral information 

was preprocessed and quantitatively analyzed for the 

purposes of prediction modeling.

(2) After a series of preprocessing methods was performed 

on the various spectral data, the influence of the data 

that had been preprocessed differently on the 

establishment of the prediction model showed that 

the optimal preprocessing method for studying 

ginsenoside concentration is the combination of SNV 

transformation and second-order differential method 

(SD + SNV), and the performance of the prediction 

model established in this manner demonstrated 

improved results.

(3) The characteristic wave band selected in this 

experiment was in the range of 900 nm -2500 nm, 

which featured significant detection characteristics. 

Therefore, a stoichiometric method was used based 

on this particular wave band. The PLS method was 

used to perform the model analysis of ginseng quality. 

With regards to the total saponin concentration of the 

ginseng, the coefficient of determination of the 

calibration set was R2 = 0.9715 mg/g, with RMSEC = 

0.2017 mg/g, RMSEP = 1.9260, and deviation value 

bias = 0.0586 mg/g.

(4) The experiment proved that the method of using 

shortwave imaging spectral technology to conduct 

real-time nondestructive detection of ginseng quality 

Table 4. Statistics of the real values and predicted values of the total saponin concentration of the prediction set samples

Number Real value % Prediction value % Residuals Relative error %

1 60.524 60.638 -0.114 0.19

2 60.058 60.665 -0.607 -1.01

3 59.937 59.995 -0.058 0.10

4 60.670 59.558 1.112 1.83

5 63.163 60.443 2.720 4.31

6 60.100 59.367 0.733 1.22

7 60.435 60.941 -0.506 0.84

8 63.000 59.757 3.243 5.15

9 60.894 59.165 1.729 2.84

10 61.020 61.268 -0.248 0.41

11 60.997 60.707 0.290 0.48

12 59.851 61.975 -2.124 3.55
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is practically feasible and meets ginsenoside detection 

modeling requirements. Furthermore, the imaging 

function of the shortwave imaging spectral technology 

also represents a major advantage in the detection of 

ginseng quality, allowing spectral detection data to be 

rapidly recorded in an image format and facilitating 

the subsequent detection of other ginseng quality 

indicators in the drying process. Far-infrared drying 

is seen to increase the yield and quality of red ginseng. 
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