• Title/Summary/Keyword: spectral finite difference method

Search Result 31, Processing Time 0.022 seconds

Numerical Analysis of Laminar Natural Convection Heat Transfer around Two Vertical Fins by a Spectral Finite Difference Method

  • Haehwan SONG;MOCHIMARU Yoshihiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.56-57
    • /
    • 2003
  • A numerical solution is presented for the natural convection heat transfer from two vertical fins using a spectral finite difference method. Virtual distant boundary conditions for two bodies that are compatible with plume behavior and with an overall continuity condition are introduced. A boundary-fitted coordinate system is formed. Streamlines, isotherms, mean Nusselt numbers and drag & lift coefficients are presented for a variety of dimensionless parameters such as a Grashof number and a Prandtl number at a steady-state. Extensive effectiveness of a spectral finite difference method was established.

  • PDF

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

Numerical Models for Atmospheric Diffusion Problems by Pseudospectral Method (1) - Atmospheric Diffusion Equations and Spectral Model - (의사스펙트로법에 의한 대기확산형상의 수치모델(1) - 대기확산방정식과 스펙트로모델 -)

  • 김선태;장영기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.189-196
    • /
    • 1991
  • In recent years spectral methods have been found to be a powerful tool for the numerical solution of hynamic differential equations. The main attraction of spectral method is accuracy even though it is generally difficult to implement and solve the complex problems using spectral method. We introduced diffusion equations describing the state of air pollution and solved by pseutospectral method in dimensionless form. The results were compared with both those of other numerical methods and analytical solutions. Comparing with finite difference method and finite element method, spectral method shows the highest accuracy for one dimension problem in this study. Also, the results of two dimensional diffusion problems show good agreement with analytical solutions.

  • PDF

EFFICIENCY ANALYSIS OF A DOMAIN DECOMPOSITION METHOD FOR THE TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Jun, Younbae
    • East Asian mathematical journal
    • /
    • v.37 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this paper, we analyze the efficiency of a domain decomposition method for the two-dimensional telegraph equations. We formulate the theoretical spectral radius of the iteration matrix generated by the domain decomposition method, because the rate of convergence of an iterative algorithm depends on the spectral radius of the iteration matrix. The theoretical spectral radius is confirmed by the experimental one using MATLAB. Speedup and operation ratio of the domain decomposition method are also compared as the two measurements of the efficiency of the method. Numerical results support the high efficiency of the domain decomposition method.

A Study on the Finite Difference Forward Modeling in SASW Method (차분 전개를 이용한 표면파 기법의 모형 응답 계산)

  • Ha, Hee-Sang;Shin, Chang-Su;Seo, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 2002
  • An analytical forward modeling algorithm was developed for the efficient application to the geotechnical engineering in SASW (Spectral Analysis of Surface Waves) method. for the theoretical dispersion curve, the finite difference method using motion stress vector, which was proposed by Aki and Richards, was employed and verified with two earth models. For the stable and fast calculation, it was found that the model size depending on the frequency range is suitable $1.5\~2$ times bigger than the wavelength.

Multidimensional Spectral Estimation by Modal Decomposition

  • Ping, Liu-Wei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.5-33
    • /
    • 2001
  • We consider here the problem of spectral estimation of multidimensional wide sense stationary (WSS) random process. A method, employing a special difference equation of correlation function, is proposed to solve the problem of multidimensional spectral estimation. In this approach, the special difference equation of correlation function is derived by modal decomposition method. Maximum likelihood estimator and Kalman filter are used to estimate the model parameters of the difference equation and the decomposed spectral residues. An algorithm is presented to estimate the multidimensional spectral density. According to the result of the simulation, these methods are feasible to estimate the spectral density of WSS process, which is realized by finite dimensional multivariable lineal system driven by white noise.

  • PDF

2-D Forward Modeling on an Explosion Data in Korea (한반도의 폭파자료에 대한 2-D 수치 모델링 연구)

  • Kang, Ik-Bum;Cho, Kwang-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.137-139
    • /
    • 2007
  • To enhance capability on discerning local and regional seismic phases, such as, Pn, Pg, Sn, Rg, etc, within the crust, 2-D numerical forward modeling will be applied to the data obtained from local seismic stations by simulating almost all waves including not only body wave but also surface wave generated without having to explicitly include them under consideration of Q factor. In this study, after getting rid of instrumental response by deconvolution, pseudo-spectral method instead of relying on typical numerical methods, such as, FEM(Finite Element Method) and FDM(Finite Difference Method), will be implemented for 2-D numerical forward modeling by considering velocities of P-wave and S-wave, density, and Q factors. Ultimately, the Power of reaching the enhanced capability on discerning local and regional seismic phases will make it easier for us to identify the seismic source, whether it is originated from man-made explosion or pure earthquake.

  • PDF

NON-OVERLAPPING RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • In this paper, a non-overlapping rectangular domain decomposition method is presented in order to numerically solve two-dimensional telegraph equations. The method is unconditionally stable and efficient. Spectral radius of the iteration matrix and convergence rate of the method are provided theoretically and confirmed numerically by MATLAB. Numerical experiments of examples are compared with several methods.

Time Domain Acoustic Propagation Analysis Using 2-D Pseudo-spectral Modeling for Ocean Environment (해양환경에서 2차원 유사 스펙트럴 모델링을 이용한 시간 영역 음 전달 해석)

  • Kim Keesan;Lee Keunhwa;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.576-582
    • /
    • 2004
  • A computer code that is based on the Pseudo-spectral finite difference algorithm using staggered grid is developed for the wave propagation modeling in the time domain. The advantage of a finite difference approximation is that any geometrically complicated media can be modeled. Staggered grids are advantageous as it provides much more accuracy than using a regular grid. Pseudo-spectral methods are those that evaluate spatial derivatives by multiplying a wavenumber by the Fourier transform of a pressure wave-field and performing the inverse Fourier transform. This method is very stable and reduces memory and the number of computations. The synthetic results by this algorithm agree with the analytic solution in the infinite and half space. The time domain modeling was implemented in various models. such as half-space. Pekeris waveguide, and range dependent environment. The snapshots showing the total wave-field reveals the Propagation characteristic or the acoustic waves through the complex ocean environment.

CALCULATION METHODS OF SOLAR ATMOSPHERIC MODEL (태양대기모델 계산법)

  • KIM KAP-SUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.65-71
    • /
    • 2000
  • We have investigated the numerical methods to calculate model atmosphere for the analysis of spectral lines emitted from the sun and stars. Basic equations used in our calculations are radiative transfer, statistical equilibrium and charge-particle conservations. Transfer equation has been solved to get emitting spectral line profile as an initial value problem using Adams-Bashforth-Moulton method with accuracy as high as 12th order. And we have calculated above non linear differential equations simultaneously as a boundary value problem by finite difference method of 3 points approximation through Feautrier elimination scheme. It is found that all computing programs coded by above numerical methods work successfully for our model atmosphere.

  • PDF