• 제목/요약/키워드: spectral expansion

검색결과 82건 처리시간 0.027초

CONVECTION IN A HORIZONTAL POROUS LAYER UNDERLYING A FLUID LAYER IN THE PRESENCE OF NON LINEAR MAGNETIC FIELD ON BOTH LAYERS

  • Bukhari, Abdul-Fattah K.;Abdullah, Abdullah A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권1호
    • /
    • pp.1-11
    • /
    • 2007
  • A linear stability analysis applied to a system consist of a horizontal fluid layer overlying a layer of a porous medium affected by a vertical magnetic field on both layers. Flow in porous medium is assumed to be governed by Darcy's law. The Beavers-Joseph condition is applied at the interface between the two layers. Numerical solutions are obtained for stationary convection case using the method of expansion of Chebyshev polynomials. It is found that the spectral method has a strong ability to solve the multilayered problem and that the magnetic field has a strong effect in his model.

  • PDF

Doubly-Selective Channel Estimation for OFDM Systems Using a Pilot-Embedded Training Scheme

  • Wang, Li-Dong;Lim, Dong-Min
    • Journal of electromagnetic engineering and science
    • /
    • 제6권4호
    • /
    • pp.203-208
    • /
    • 2006
  • Channel estimation and data detection for OFDM systems over time- and frequency-selective channels are investigated. Relying on the complex exponential basis expansion channel model, a pilot-embedded channel estimation scheme with low computational complexity and spectral efficiency is proposed. A periodic pilot sequence is superimposed at a low power on information bearing sequence at the transmitter before modulation and transmission. The channel state information(CSI) can be estimated using the first-order statistics of the received data. In order to enhance the performance of channel estimation, we recover the transmitted data which can be exploited to estimate CSI iteratively. Simulation results show that the proposed method is suitable for doubly-selective channel estimation for the OFDM systems and the performance of the proposed method can be better than that of the Wiener filter method under some conditions. Through simulations, we also analyze the factors which can affect the system performances.

Overlap Integrals and Recoursion Formulas for Morse Wavefunction

  • Lee, Mu-Sang;Carreira, L.A.;Berkowitz, D.A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권1호
    • /
    • pp.6-12
    • /
    • 1986
  • Overlap integrals for the case in which the ground and excited states are represented by Morse potential functions were derived. In order to calculate the spectral intensities in Morse wavefunctions, a method of expanding the wavefunctions of one state in terms of the other was developed to allow the ground and the excited state frequencies to be different. From the expansion of Morse wavefunctions, recursion formulas were developed for variational matrix elements of Morse wavefunctions. The matrix elements can be calculated using these recursion formulas and the diagonalized results which eigenvalues (allowed energies) were all successfully satisfied to Morse energy formulas.

New Compensation Method for Temperature Sensitivity of Fiber Brags Grating Using Bi-metal

  • Chung, Young-Joo;Song, Jong-Seob;Han, Won-Taek;Paek, Un-Chul
    • Journal of the Optical Society of Korea
    • /
    • 제7권2호
    • /
    • pp.84-88
    • /
    • 2003
  • A new method for temperature compensation of fiber Bragg grating (FBG) using hi-metal is proposed and experimentally demonstrated. Bi-metal bends toward the metal of low temperature expansion coefficient as the temperature increases, and this property is utilized to cancel the thermo-optic effect of the fiber. The optimum thickness of the high coefficient metal was empirically found by the trial-and-error method. The temperature sensitivities were 8.1 pm/$^{\circ}C$ and -0.018 pm/$^{\circ}C$ for the uncompensated and compensated FBGs, respectively, which indicates a reduction to a mere 0.22 % of the original sensitivity. No appreciable change in the spectral shape was observed. The packaging technique described in this paper is simple and compact, and it can be used for FBGs in WDM and DWDM communication systems that have stringent requirements on the temperature stability of the components.

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.

Study on Design of Two-Axis Image Stabilization Controller through Drone Flight Test Data Standardization

  • Jeongwon, Kim;Gyuchan, Lee;Dong-gi, Kwag
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.470-477
    • /
    • 2022
  • EOTS for drones is showing another aspect of market expansion in detection and recognition areas previously occupied by artificial satellites. The two-axis EOTS for drones controls the vibration or disturbance caused by the drone during the mission so that EOTS can accurately recognize the goal. Vibration generated by drones is transmitted to EOTS. Therefore, it is essential to develop a stabilization controller that attenuates vibrations transmitted from drones so that EOTS can maintain the viewing angle. Therefore, it is necessary to standardize drone disturbance and secure the performance of EOTS disturbance attenuation controller optimized for disturbance level through this. In this paper, a method of standardizing drone disturbance applied to EOTS is studied, through which EOTS controller simulation is performed and stabilization controller shape is selected and designed.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • 한국측량학회지
    • /
    • 제36권3호
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

음성엔코더 시뮬레이션에 사용되는 난수발생기 설계 (Design of Random Number Generator for Simulation of Speech-Waveform Coders)

  • 박중후
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.3-9
    • /
    • 2001
  • 본 논문에서는 음성엔코더 (speech-waveform coder) 시뮬레이션에 사용할 수 있는 난수발생기를 설계하였다. 설계된 난수발생기는 규정된 확률밀도함수와 규정된 스펙트럼을 동시에 만족해야 하는 환경에서 필요로 하는 것이다. 선형필터와 메모리가 없는 비선형 회로로 구성되는 Sondhi 알고리즘 [1]을 기반으로 하여 난수발생기를 구현하였고, 균일 분포, 이진 분포, 감마 분포와 같은 연속적인 확률분포함수들을 얻기 위해 필요한 선형필터와 비선형 회로를 구현하는 방법을 연구하였다. 또한 분석적인 방법을 통하여 구현해야 하는 비선형 회로가 비대칭 형태로 표현되지 않는 경우 (카이-제곱 분포, lognormal 분포)와 수학식으로 표현할 수 없는 경우 (Student-t 분포, F 분포)에는 Sondhi 알고리즘이 동작하지 않음을 보였다.

  • PDF

광파이버 브래그 격자형 무게 센서에 관한 연구 (A Study on n FBG Weight Sensor)

  • 이종윤;정진호
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.721-725
    • /
    • 2007
  • 무게 센서를 기본으로 한 광파이버는 무게에 민감한 파이버 브래그 격자를 이용한 구조로 되어있다. FBG 본래의 특성을 이용한 센싱과 광파이버 브래그 격자를 통하여 스트레인 효과를 기본으로 하였다. 무게 레벨의 직접적인 표시는 센싱 물질의 팽창으로 말미암아 브래그 파장의 천이에 의하여 알 수 있다. FBG의 동작은 스트레인과 온도에 매우 민감하게 만들기 위해서 본래의 특성에 의한 것으로 특별한 필터와 같다. 이러한 센싱 원리는 무게를 인가한 것으로 FBG를 통해서 스트레인 효과를 기본으로 한 것이다. 실험 구성은 센서의 무게 응답특성을 초기 연구를 통해 이용하였다. 센서로부터 투과된 신호는 0.4nm의 분해능 대역폭을 가지며 광 스펙트럼분석기를 이용하여 관찰하였다. 본 논문에서는 무게에 따른 광파이버 브래그 격자의 중심 파장이 변화하는 것을 이용하는 동시에 작은 격자 부분에 무게로 영향을 주어 FBG의 스펙트럼 특성과 형태를 나타내었으며, 광파이버의 내구성이 사라졌을 때 파장과 스트레인 변화가 제거됨을 알 수 있었다. 즉, 무게에 의해 광파이버가 파괴되면 물리적인 손상을 입게 된다.

  • PDF

A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams

  • Du, Mengjie;Liu, Jun;Ye, Wenbin;Yang, Fan;Lin, Gao
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.179-194
    • /
    • 2022
  • The bending, buckling and free vibration responses of functionally graded material (FGM) beams are investigated semi-analytically by the scaled boundary finite element method (SBFEM) in this paper. In the concepts of the SBFEM, the dimension of computational domain can be reduced by one, therefore only the axial dimension of the beam is discretized using the higher order spectral element, which reduces the amount of calculation and greatly improves the calculation efficiency. The governing equation of FGM beams is derived in detail by the means of the principle of virtual work. Compared with the higher-order beam theory, fewer parameters and simpler control equations are used. And the governing equation is transformed into a first-order ordinary differential equation by introducing intermediate variables. Analytical solutions of the governing equation can be obtained by pade series expansion in the direction of thickness. Numerical example are compared with the numerical solutions provided by the previous researchers to verify the accuracy and applicability of the proposed method. The results show that the proposed formulations can quickly converge to the reference solutions by increasing the order of higher order spectral elements, and high accuracy can be achieved by using a small number of the elements. In addition, the influence of the structural sizes, material properties and boundary conditions on the mechanical behaviors of FG beams subjected to different load types is discussed.