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Overlap Integrals and Recursion Formulas for Morse Wavefunctions
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Overlap integrals for the case in which the ground and excited states are represented by Morse potential functions were 

derived. In order to calculate the spectral intensities in Morse wavefunctions, a method of expanding the wavefunctions of 

one state in terms of the other was developed to allow the ground and the excited state frequencies to be different. From 

the expansion of Morse wavefunctions, recursion formulas were developed for variational matrix elements of Morse wavefunc

tions. The matrix elements can be calculated using these recursion formulas and the diagonalized results which eigenvalues 

(allowed energies) were all successfully satisfied to Morse energy formulas.

Introduction

Spectral intensities in absorbances, fluorescence, Raman 

and CARS (coherent Anti-stokes Raman Spectroscopy) at a 

given wavelength depend upon several molecular parameters 

such as ground and excited state frequencies, dissociation 

energies, and displacement of the excited state along the nor

mal coordinate of interest.

Inagaki, et al.' have evaluated the approximate overlap in

tegrals for the case in which both the ground and excited elec

tronic states are harmonic and identical, but displaced from 

each other along the normal coordinate of interest. Therefore 

the ground state and excited state frequencies must be equal 

which limits the generality of the treatment. The treatment 

on Harmonic oscillator was then significantly improved by 

Berkowitz2 by allowing the ground and excited state frequen

cies to differ. With these results, Carreira et 시.' have tested 

the excitation profiles of N,N-diethyl-p-nitrosoaniline, 

Potassium Permanganate and Potassium Chromate using the 

program, and they have produced a satisfactory excitation pro

file of the above molecules.

A thorough search of the literature revealed no closed form 

evaluations of overlap integrals of Morse wavefunctions. In 

this report we have developed overlap integrals for Morse 

potential wavefunctions in which excited state frequency and 

dissociation energy are equal to ground state frequency and 

dissociation. Also, we developed illation for variational matrix 

elements of Morse wavefunctions when frequency and 

dissociation energy of excited states differ with those of 

ground states.

A program has been developed to calculate the energy 

levels and corresponding wavefunctions for Morse potential 

wavefunctions.

Morse wave functions for the nuclear vibration
The Morse potential function in terms of displacement from 

the equilibrium position r0 is given4 by

= De " 히 r-r«1 - 2De ~w「一，이 (1)

where

Wq 知 =Spectroscopic anharmonicity factor in cm-1

D = dissociation energy

The wavefunction derived from this potential are given4 by 

知r)= (* 으) ""广〜"〔ML—。)™/ L：：*：：：

〔2dL(f)〕 (2)

where

d=2n (2以D)A2d=4収2以D) l/2/aA

= associated Laguerre Polynomial of degree b-a

Nn= [(A- 1)!—一一껑「一一— {Nn represents the

nomalization constant given by Morse4 for integral K) 

Transforming to the dimensionless coordinate, & equation (1) 

and (2) become (3) and (4)

V(^=De~3lit-2De~a'e (3)

饱&)= (夢으)”eTL''〔2deS〕”L_：：5(2deS) ⑷ 

where

= 서 = 후% f=(R)"(Ln),

4龙七 , .、
7 = ―j「一 and xz = reduced mass

If the potential well equilibrium position is displaced by 厶,屮“ 
is given by;

—厶)

= (専으) ”广1L_一囂+"〔2de-。' ]
Nn

= (竺으)f ° "〔2de 2 七。‘ 幻 5 〔2de -a，＜ea，i)

Nn +

(5)

To simplify the forms of equations (3), (4), (5) following

substitutions were made; X=2de^a，t, c=e“쇼

V(睥糸X-当X ⑹

4d d

4(X)=(爲)”(X) (7)

饱华 (CX)=( 斧으) (CX) (8)

where the following notations are used;

^represent ground state wave functions, ^represent ex

cited state wavefunctions.
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Overlap integrals with Morse wavefunction.
A. excited state frequency ^nd dissociation energy equal to 

ground state frequency and dissociation energy.

The first step in the evaluation of the overlap integral in

volves the transformation to dimensionless coordinate X defin

ed earlier.

X = 2def'” =(』")'시 r

df =규 (用) l/idr

dx = -af2de~a，td^ = -/Xdf (〃刀"Xdr

remembering that(/(")-1/J and rearranging;

山—__ 1_ dx

a x

Therefore;

f #?(r)化,(r-4)dr= (X)仇(CX)dx (9)

combining equations (7), (8) and (9) gives

F쯔齢"L：：tI (X) l_* “(CX)&

(10)

This integral is evaluated using a method based on related 

work done by Schroedinger.5 This is identical in form to 

Schroedinger^s equation if the following definitions are made;

as^lt 们=C,而广位 Ks=it n：=Bs =

P=(们+"z)/2

Rewriting equation (10) in terms of these definitions give;

(id

-成幣客”5” X M (M) [_ :丄，(&x)dx

tta/i

Schroedinger makes the following definitions:

§= J；"*' 贝= j )，为=

Therefore X = Qty

dX = o,dy

asX =

psX 그 y=y-yy

Substitution into equation (11) gives;

'"广 L 心7[_；：丄3+由L_："(g-膈)由,(12)

Evaluation of the integral Js depends upon the expan오ion of 

terms of the form L^(A^B).

B. Evalvation of Js integral

In order to further evaluate equation (12), expansion of the 

Laguerre Polynomial evaluated at a sum of two functions of 

y must be derived. Buchholz6 gives an equation for the ex

pansion of terms of the form L^Aiy) + B(y)] into terms 

of L^[A(y)] and Li[B(y)] which is modified here to fit 

Schroedinger's equation (12). From the context in which it 

was used, the polynomial used in Schroedinger^ paper, 

denoted by 乙(y), is a possible solution to the differential equa

tion (13)?

(g) + d + l)Z (y) + d)Z3)=0 (13)

Buchholz defines the polynomial to be denoted as sLi (y) in 

terms of equation (14).6

(g) + (6 - y+1) Z' (y) + 屹(y) = 0 (14)

The two equations yield the following respective definitions 

of the polynomial for integral a and b.7

丄（必弋萨，靜妒L）〕 (15)

Equations (13) and (14) are identical if n 느 a-b

sLi (y) = IZ.b (y) and X! (y) can be expanded in powers of^4-5

K a” (a!)，

L 3) = £ 1) »(「Dm)*  广(16)

(a—D 命 

a—b y *

幻!시(17)

comparing (16) with (17), it is clear that

- (18)

Buchholz's equation for the expansion of J、[A(y) + B(y)] 

is given by

丄旗“ +B) = 호:与答LHk (A) (19)

Combining equations (18) with (19) gives:

丄 ：(A+B)= 흘:咨二 |_；W) (20)

From equation (20), it can be shown that:

£：：Z+7쇼，)=£ (守為L：：*) (21)

也:"I心“如靜(22)

Substitution into equation (12) and rearrangement gives:

kg H-s y 入f*  00
人z x (-1)A" fn——r / 产5七 

시 “广0 入s!

L 匚初抄向 （23）

Now we can expand integral part.

k's v
七 丄으----- K,

-usJLU/。丄（T）"妇 (24)

V
Ks~^s

(卩+人s+us)! (ns+^a)! t (25)

AM 了 =（—］）财+%+七+心廿（p（ p+^s~ns）

(26)

where k„ k；, and P and defined earlier.

Thus, the total overlap integral <i\v> is given by

〈巾〉=
二丝竺

（NW
(27)

Calculation of overlap integrals in the case of 4=0 using 은qua- 

tion (27) led to the following results:
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«|。〉=眼川；11 I 

dL=O, 2蛰
(28)

Thus to fully normalize the wavefunctions, the normalization 

constant is redefined by:

NAWm-l)!〕成 으二스｛으쓰iVn (29) 

3=0 SI

Values of the relevant terms are given in Table 1 for 

specific integrals of interest, (excited state frequency and 

dissociation energy equal to ground state frequency and 

dissociation energy).

Since the Laguerre polynomials are only real when a and 

b are integers4 the calculated value of k which typically ranges 

from 50 to 1000, is rounded to the nearest integer for the pur

pose of calculation, without significant loss of accuracy or 

generality.

Recursion formula for variational matrix elements of Morse 
wavefunctions. (v>vf,
A. Excited state frequency and dissociation energy not equal 

to ground state frequency and dissociation energy.

The Morse potential function expressed in dimensionless 

coordinate, 4 is given by equation (3). Clearly, for the case 

in which these parameters differ in the excited and ground 

states, the potential functions will differ. Thus the potential 

functions for the ground and excited states are given by:

K (f ) =Oge - 2腿"X (30)

Ve^/)-Dee-2a'ee'-2Dee-a^ (31)

The respective wavefunctions of the two states will then be 

given by:

g*)

= (쯜户一)山〔2dQ%，〕气s 丄_£丄 (2如广加) (32)

啊.e(f')

= 乌으"-3如〔2頌。頒广，" 丄_：當，(23。招) (33) 

where ^ig is the wavefunction of the level in the ground 

state and Wpe is the Vth wavefunction in the excited state. 

Wavefunctions (32) and (33) are different but any arbitrary 

well-behaved function can be expanded in terms of the or

thonormal eigenfunctions of a Hermitian operator. If the ex

cited state frequency is greater than the ground state 

frequency, the excited state wavefunctions are expanded in 

terms of a basis set consisting of the ground state wavefunc

tions. Thus, for the case in which v.>v, and D, + Dt

Table 1. Evaluation 

Wavefunctions

of Important Integrals of Morse

Integral 总 如 p

<O|V> 知1 0 ^-27-1 V k-V-1

< 애 i> i k-1 0 k-i-1

<V\1> k-3 1 k~2V-l V k-V-2

<1|V> k-3 1 k-2V-l V k-V-2

<v\o> k-1 0 k-2V~l V k-V-l

<V]2> k-5 2 k-2V-\ V k-V-3

〈기 卩〉 k-5 2 k~2V-l V k-V-3

i 극 ground state vibrational energy level. V = excited state vibra

tional energy level. 0,1,2 = vibrational energy level.

也==与。미血 (34)

where the summation ranges over both even and odd values 

of i. For the case in which vt<vKt

= Z Cit (35)

where the summation ranges over both even and odd values 

of t. Therefore, the overlap integrals of interest are of the form: 

if ve> v8 and De=^Dg ,

〈W〉= /奔 W (36)

= A = 〈찌 j〉 (37)

订 ve < & and De^Dg

〈i I卩〉=J&M edr-E Cit <i Iv〉 (38)

°시，〉C八〈히｝〉 (39)

Evaluation of the constants Cvm and Cit is necessary before 

the ov은Hap integrals (36) -*  (39) can.be used.

These constants Cvm and Cit are evaluated by the formation 

and diagonalization of a variational Hamiltonian matrix whose 

elements are given by:

乩方(40) 

Where ^and ^are ground state wave functions and fie is 

the Hamiltonian operator of the excited state defined by:

Hc = T+Ve：f=-i-PJ (41)

= (% v %) (42)

Where 平財 and %care excited state wavefunctions and Sg is 

the Hamiltonian operator of the ground state defined by:

*、 * A 1 A
H«=T+V,：T=|p« (43)

Hamiltonian matrix elements are of the form (for eqn (40)):

= (44)

where

7丄=小泞妇氐

"허" 혀'eMr

B. Coordinate Transformation of Hamiltonian and Wave

functions.

The Hamiltonian of the excited state is given by

克(广)(广) (45)

In order to define the excited state potential (31) in terms 

of the ground state (30), the following definition is made:

，은F 国

In order to keep Xi real, as described earlier, t is rounded 

to the nearest integer. Thus:

Ve(fz) =De (e-a'«,)»-2De (艾“混)' (47)

Rearrangement with dimensionless coordinate Xt (47) gives:
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where

Ve(X)=AXtt-BXt (48) +응L：：：：： （X） +xE“”

X = 2d^e-a'^ A= De B=-쓰흐一
々电’(2如严，h (2dgy

In terms of displacement from the equilibrium position (r-心 

the kinetic energy operator is given by: 

흐［ _흐］
1 = ~2^ 迎

From the earlier definition az

Therefore

LM(x)〕

(55) becomes:

1/2 E Z, 
S-l

where

where

Thus;

(49)

(58)

(59)

Where each of the twelve terms Zs is of the general form:

(60)Zs=CXl_*(X)eTs

—=-af (j")“X 
ar

(50)
and Zs are listed explicitly in Table 2. 

From potential energy operator (48):

으=（쓰 으）」쓰읊彖 n, l4 X" 0 “ - BX0/

a a1
r W)(x 云+x 成，) (51)

=(辭)“ (AZ“-B乙,)
(61)

fore;
Z“ =史"5"“」_拦顷(X) e (62)

F滂L 咎X으+X*
(52)

ZlXE+mL：：：盘x）e-s (63)

Ex 으+x，으j
(53)

The fourteen terms generated by 69 are given by:

* 여" ， “
G주그)PEg,乙+AZ"-BZ“〕 (64)

gE (元+无) (54)

站 X읊 an打产 X，으

T&=E (f, 4>n, g+t2 4农 g)

The wavefunction ^ng is given by equation (7) 

"e-sx""싱—：：:“(X)

話，L (쯔辭"〔-$X'애‘*시一/ ，,(X)e" +

i삿e

(

(X)厂"〕

Evaluating, and noting the fact that:

d 나(X) = ［_y(X)

(55)

(56)

I曲w 
"一«n,r+n

(57)

气*〔十/5＞」项二M

_쓰"5” L齢*（X） 

LWR, （X）-牛义5八丄二盘”（X） 

_|_8" （夕n,*-z  ） 乂上“/亳 J_（X） I 8"七《허'**幻八

」_：：：：： （X）

Ta비e 2. Kinetic Energy Operator Terms

Z产疽八Xi'N

⑴…k 2：“（x）

⑵T 2：撰

（3） Z— 卜$5心）

小一们…n

⑴衣十l;二（X）

（5）Z；—¥2L（X）

⑹…k比爭）

(7) Z； - -*X  L?" (X)

4 一fln, t+n

(8) Z； = &X 们5'(X)

2 S1—fl n, <+n

(9) Z； = 으女 1 ："'(X)

2 J* —p n, r+n

(10) Z" L"'(X)

g Z" 씋席 2：：：（X）

(12) Z,= X， 1 ?"”(X) 

8七一fin, r+n
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C. Matrix Element Evaluation and Recursion formulas. 

The Hamiltonian matrix elements are defined by equation 

(40)

= 由e ^j,gdr

Dropping the subscripts g and e where unambiguous, the 

Morse wavefunctions are given by:

0’ = (쯜夢) 去 (X) e -s (65)

關 =(专희 * X”/，成 (X) e s 跳)

From (50), dr=—X~'dX

Table 3. Hamiltonian Matrix Elements (Morse potentials)

which implies that

/(r) He 0 (r)dr= -는时 Q (X、) 讯血(X) dX

Thus the matrix elements, are given by:

~2dg
比"=(M NjW 門'/i，J

where the terms 玲 and 华 are given in Table 3.

In Table 3,村 is of the form:

/(xaL：：宀(X)l_：：皿(x))dx

which can be evaluated using Schroedinger^5 paper

U'Jp!(七+&)! (n's+k3)!”广(_]广 gfE+r 
r=o

ST*  (P-ns . ,_p_]
ks~Tf \f_T) ' r

(67)

(68)

(69)

(70)

Equation (68) can be written as:

(71)Hf、F投曹G須

B,=k-2i-l B,=k-2j-l

Table 4. Evaluation of Matrix Elements

s P na ka 始 F尸

1 k-2j-l j k-2i-l i，
_E_
~~2

2 k-i-j-2 k~2j-l J A-2M i
F
—(A-2J-1)

3* k-2j J-l ^-2i-1 i E

4 k-i-j k-2j-\ j k~2,i~ 1 i
jE
T

5 k-i-j-1 k-2j-l i k-2>i-1 i
F 

4

6* k^i-j k-2j j-1 i
_jE
"T

7 k-i-j-l j k-2i-l i
F

-~r (^-2)-1)
4

8 k-i-j~2 j k-2i-1 i
E
~7~ (A-2J-3)
4

9* k-i-j-1 k-2j j-1 k-2i-l i
F

10* k-i-j k-2j j-1 k-2i-l i
_ E

11* k-2j j-1 k-2i-l i
F

12** k-i-j 虹 2j+l j~2 k-2i-l i E

13 k-i-j-2+2t k-2j~l J k-2i-l i A

14 k-i~j-2+t k-2,j-1 J k-2i-l i

心
小

*F”J?，,Gy=0 if j<l. ** Fg，,J",Gg，=0 if j<2.

E, A, B are defined previously.

、
u:
u:
u:
u:
u:
u:
u:
u:
u:4

u:
u:
u:

疚

dx
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Table 5. Recursion R이ationships for all Diagonal Elements

i! (42」1)
(42i)' Z>°

J拦

J；"

_ J扩
1)

=J；"(42i)

J；/ (i=2) =J^ (42i+2) (42£+l) (42i)

丿扩 (i = 3) = J나 (42i+4)(42i+3) (42i+2) (42£+l) (k-2i)

J扩(t = 3) =J! * * (A-2i + l) (k-2i)

where

J；J = (N?畐住 P! Ss +幻)！ (n； +以)！

M,=繕：(_])"%+幻*+「(心)(M)(_尸)

The relevant values of p, ns, ksr n；t 如,and 玲 are given as func

tions of i and j for each integral in Table 4.

Consideration of Table 3 reveals that I3t L, I9t and /n 

must be zero if;<7. /12 must be zero if;<2. This can be shown 

to be true by the use of equation (15)7:

J b j a

丄MZ奇〔七护妒L)〕

Clearly 丄匕=0 when b>a. This is the case in I3r 4,19, Z10 and 

Zn when j<l and IiZ when j<2.

The following recursion relationships of the 抨 terms wore 

calculated.

= = = (72-a)

* = (72-b)

丿："=丿：”=丿扩=丿3"" = J；矿。=1) = J；矿(t = 2) (72-c) 

where the superscripts i, j designate all values of i and，그0 

unless otherwise designated. The calculated recursion for

mulas for all diagonal elements except as designated are listed 

in Table 5 and off-diagonal elements in Table 6. Once the

Table 6. Recursion R이ationships for all off-diagonal Elements

〔j! (41)(42j-l)〕*

〔(知1)(知 2)(2)〕*
(i= Q except I131 = 0 )

j；.,_ G!j! (42i-l)(*-2j-l) 〕* , (.>0)

〔(k-j-1)—(知j-i)〕〔 (k-i-1) — (k-j)〕丢

jy
j^1

jy 妇项

丿:矿($ = 2) (A-i-j + 1) (k-i-j)

J；「(£=3) =Jl'J (fc-i-j+4) (i-i-j+3)-*

丄i'(t=3) (A-i-j + l) (k-i-j) 

matrix elements are calculated by using these recursion rela

tionships, they are placed into a column-packed upper 

triangular matrix to be diagonalized. The diagonalization then 

yields both the eigenvectors and the eigenvalues.

Conclusion
We have developed kinetic and potential operator for the 

Morse wavefunctions when the ground states frequencies and 

dissociation energies differ from those of excited states fre

quencies and dissociation energies. Also, we developed recur

sion formulas for vibrational matrix elements of Morse 

wavefunctions.

Examination of the literature revealed that there were no 

closed form evaluations of overlap integrals of Morse poten

tial wavefunctions. However, molecules with relatively low- 

dissociation energies are not approximated well by any of the 

harmonic and anharmonic potentials. We still need to more 

study for the refinements of some equations. From our results, 

the overlap integrals and spectral intensities of absorbance, 

fluorescence, Raman and CARS can be evaluated using Morse 

wavefunctions.

Appendix A. Important integrals for Morse Warefunctions.

(Vc>vr； De^Dg)

(a) 扌,&,“試了=므〈이。그 = £*

= C 讷〈이 0>+CsV이 l〉+CgV이 2> +…

(b) Cg〈찌 i >

= COo<0|i>+COI<l|i>+CO2<2|i> + -"

(c) V이 1〉= 专 c허■ <쩌1 그

=Cg〈이 1>+CsV1U그+Cm<2|l〉+…

(d) 专

=Cp.<l|0>+C„1<l|l>+Ct；2<l|2> + -

(e) “初〈히0〉= Ct)M<m|0>

= C”〈이0느+(兀]<1|0〉+6；8〈2|0〉+ —

(f) .e们,«L=<이2> = MCg<m|2>

-C。。〈이2>+C”〈니 2>+C”〈기 2> +…

(g) y^?,»^v.edr=<2|»> = Z Cvn<2\m>

=CM<2|0>+C„,<2|l>+C„I<2|2> +■•-

Appendix B. Important integrals for Morse Wavefunctions.

(&V&； De^Dg)

(a) J杭、小丄"广= <Q\v> = S Cit<t g그

= Cg<K)m〉+ C0i<l.|t?〉+C(”V2|tr>T—

(b) 〈이〉= 4；C“〈이t>

= (\.<이0>+(；“<이1〉+<："<이2〉+ “・

(C)<。|1> = 4<二,〈이 t >

= CloV이0>+Cn<이l.〉+C”V이2그^—

(d) edr= <l\v> = Z Cn<l\v>

이©〉+ Cn<l| v>+Cn<2|v>-|—

(e) j心 <»|O> = X Cot<v\t >

= CmV이。〉+ CsV이 1>+Cg< 히 2> +…
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(f) 们히= 히'〉

匸(3*.< 이0〉+Cm<이 1>+C”〈이2> +…

(g) “1，2| 。= 4心<：시。*

hCx 이©〉+cH>+c“< 이©>+•“
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Lead tolerance of Pt/Al3O3 catalysts was evaluated for CO oxidation depending on the properties of the alumina supports 

and base metals added as promoter. Among the four different alumina supports, the support with a larg은 macropore volume 

(0.45cc/g) and 5% Ce has shown the best resistance to lead poisoning. Most of the base metals added to the Pt-catalysts 

were found to be ineffective for improving lead resistence, but boron has shown an excellent lead tolerence, although it decreases 

the initial catalytic activity.

Introduction

The major cause of catalyst deactivation in th은 automobile 

systems using leaded gasoline is poisoning by lead. Although 

the lead deactivation has recently been reviewed by several 

authors,1-4 its detailed mechanism was not completely 

understood. Some of the important aspects of lead poisoning 

known by experiments are that among the single component 

metal catalysts, Pt-catalyst is most resistant to lead poison

ing and a considerable fraction (10-30%) of the lead in the 

fuel consumed is deposited on the catalyst a응 lead sulfate or 

phosphate in major. Such a coating of lead salts on the catalyst 

surface cause poor mass transfer propertie어 resulting in 

decrease of its activity. Furthermore, experiments have shown 

only a small change 응 in the macropore volume of the support 

AlaO3 while a remarkable decrease in the micropore volume 

was observed.5

In this paper we present the results of the attempts to 

prepare lead-tolerant catalysts for CO oxidation by im

pregnating platinum into modified y-Al3O3 supports with dif

ferent properties and by promoting the Pt-catalyst using 

various base-metals.

Experimented

Preparation of Pt-catalysts supported on /-A12O3.
Pt-impregnated catalysts were prepared using four dif

ferent kinds of r-Al2O3 pellets of 2-8mm in diameter obtain

ed from Rhone-Poulenc. Their characterestic properties are 

shown in Table 1.

In order to load platinum an aqueous solution of H2PtCl6 • 

6H2O with pH adjusted to 2.5±0,5 using HC1 solution was 

impregnated on the alumina supports. An exact amount of the 

Pt-solution containing 0.2% Pt of the alumina support was 

taken into a round-bottom flask together with the dried 

alumina pellets and then evaporated to dryness in a rotary 

evaporator at 85°C. The catalyst was dried at 150°C in oven 

and then calcined for 4 hours at 550°C. The catalyst was then 

reduced under hydrogen atmosphere for 2 hours at 550°C 

before use.


