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Abdul-Fattah K. Bukhari and Abdullah A. Abdullah
Department of Mathematical Sciences, Faculty of Applied Sciences
Umm Al-Qura University, Makkah, Saudi Arabia.

Abstract : A linear stability analysis applied to a system consist of a horizontal fluid layer
overlying a layer of a porous medium affected by a vertical magnetic field on both layers.
Flow in porous medium is assumed to be governed by Darcy’s law. The Beavers-Joseph
condition is applied at the interface between the two layers. Numerical solutions are
obtained for stationary convection case using the method of expansion of Chebyshev
polynomials. It is found that the spectral method has a strong ability to solve the multi-
layered problem and that the magnetic field has a strong effect in his model.

1. INTRODUCTION

The onset of convection in a system consisting of a horizontal fluid layer
overlying a layer of a porous layer when the system is heated from below has been
considered first by Sun (1973) who showed that the critical Rayleigh number in the
porous layer decreases continuously as the thickness of the fluid layer is increased.
He used the shooting method to solve the linear stability equations. Nield (1977)
formulated the problem with surface-tension effects at a deformable upper surface
and obtained asymptotic solutions for small wave numbers for a constant heat-flux
boundary condition. Sun and Nield used Darcy’s law in formulating the equations for
porous layer and Somerton and Catton (1982) used the Brinkman term in the equation
of motion to solve the problem using Galerkin method. Chen and Chen (1988)
considered the problem with temperature and salinity gradients existing in both layers.

Their investigation assumed stationary instability from the outset and they used a
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shooting technique based on fourth order Runge-Kutta approximations for integration
of all differential equations. Chen et. al (1991) studied the problem with anisotropic
permeability and thermal diffusivity in the porous layer. Flow in porous layer was
assumed to be governed by Darcy’s law. The linearized stability equations were
solved using shooting method. In the present study, we shall emulate the work of
Chen and Chen (1988) in the presence of a vertical ‘magnetic field. i.e. we shall
consider the onset of thermal convection in a horizontal porous layer, affected by a
vertical magnetic field, superposed by a fluid layer. The flow in porous layer is
assumed to be governed by Darcy’s law. The linear stability equations are solved
using expansion of Chebyshev polynomials. This method has been used by Abdullah
(1991) in the study of the Benard problem in the presence of a non-linear magnetic
fluid and by Lindsay and Ogden (1992) in the implementation of spectral methods
resistant to the generation of spurious eigenvalues. Lamb (1994) used this method to
investigate an eigenvalue problem arising from a model discussing the instability in
the earth’s core. The method possesses excellent convergence characteristics and

effectively exhibits exponential convergence rather than finite power convergence.

2. MATHEMATICAL FORMULATION

LetL, and L,be two horizontal layers such that the bottom of the layer L,
touches the top of the layer L, . A right handed system of Cartesian
coordinates(x,, i=12,3) is chosen so that the interface is the planex, =0, the top
boundary of L, is x; = d,and the lower boundary of L, is x, =—d,, . suppose that
the upper layer L, is filled with an incompressible thermally and electrically

conducting viscous fluid field whereas the lower layer L, is occupied by a porous

medium permeated by the fluid and is subjected to a constant vertical magnetic field.
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Gravity acts in the negative direction and the porous medium is heated at its lower
boundary. Convection takes place in which temperature driven buoyancy effects are
damped by viscous effects. A stationary fluid with a thermal gradient in the x,
direction (the so called “conduction solution” ) is one possible solution to this
problem and so it is natural to investigate its stability.

The fluid flow in the porous layer L, , with thickness d,, , is governed by
Darcy’s law, whereas the fluid flow in the upper layer L, , with thickness 4, , is

governed by Navier-Stokes equations. Convection is driven by the temperature
dependence of the fluid density. Typically, the Oberbeck-Boussinesq approximation
is made in which local thermal equilibrium, heating from viscous dissipation,
radiation effects ect. are ignored as are variations in fluid density except where they
occure in the momentum equation. Let T denote the Kelvin temperature of the fluid

andT; be a constant reference Kelvin temperature. For the purpose of this work, the

fluid density p is related toT' by

p;=poll-a(T -T,)] 2.1)
where p, is the density of the fluid at 7;and « (suppose constant) is the coefficient
of volume expansion of the fluid.

LetV, ,H,,B,,J,and E, be respectively the velocity of the fluid in the

porous medium layer, magnetic field, magnetic induction, current density and electric
field. the incompressibility of the fluid and the non-existence of magnetic monopoles

require that ¥, and B,, are both solenoidal vectors. Hence
divV, =0, (2.2)
div B, =0, (2.3)
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Suppose that the magnetization in the fluid is directly proportional to the applied field
and that the fluid behaves like an Ohmic conductor so that H,,,B,,J, and E, are

connected by the relations

H,=p$B,, ¢=-§——2§;, £ = £(p, B)
(2.4)

J,=c(E,+V,xB,)

and the Maxwell equations

-~ curl E, =—aB"' ,
1 ot 2.5)
J,=—curl H,,
4z

where u _(constant) is the magnetic permeability, o is the electrical conductivity and

the displacement current has been neglected in the second of these Maxwell equations
as is customary in situation when free charge is instantaneously dispersed. On taking
the curl of equations (2.5), and replacing the electric field by the Maxwell equation
(2.5)1, the magnetic field H, is now readily seen to satisfy the partial differential

equation

nacurlcurl H, =— agt”’ +curl(V, xH,,) (2.6)

where 7, = (47u,0) " is the electrical resistivity. Equation (2.6) is now reworked

using standard vector identities to yield

oH,
ot

The relation (2.4) and (2.5) can be used to recast the Lorentz force J x B into

J, xB, =—1—(cur1Hm)x(H'")=L H, .(VH’”)—V[H:' H 2.8)
4z pp ) Am ol 2p¢

=(H, -VW,-(V, -V)H, +n,curl J,,. 2.7)
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The field equations for this problem are written separately for the overlying fluid

layer and porous medium layer. The governing equations for the fluid layer are

oV, 2 1 H,
Po 7+V,.VV, =-VP, +uv Vf+pf,g+4 H,-V|—- ot |

or
(oc, )f(——f—+V, .VTf) =k, VT, 2.9)

0
a’;’t —(a,-Vy, -, -V, +n,curl ],

where 7, is the Kelvin temperature of the fluid layer, P, is the hydrostatic pressure, g
is the acceleration due to gravity, 4 is the dynamic viscosity of the fluid, (pc , ) F is the

heat capacity per unit volume of the fluid at constant pressure and k, is the thermal

conductivity of the fluid. The governing equations for porous medium are given by

Py OV, P 1 H
Lo -vp -Ly. 7
$ a DA™ (p«s)
(pc), aaTt'" +(gc,) ¥, VT, = k,V°T,, (2.10)
ag " =(H, VW, -V, V)H, +n,curl J,.

where T, is the Kelvin temperature of the porous medium layer, V,,is the solenoidal
seepage velocity, P, is the hydrostatic pressure, k is the permeability of the porous
medium, ¢ is its porosity, k, is the overall thermal conductivity of the porous

medium and (pc), is the overall heat capacity per unit volume of porous medium at

constant pressure. In fact
le), =dloc, ), +0-dhee,),
where (pc » )m is the heat capacity per unit volume of porous substrate. The convection

problem is completed by the specification of boundary conditions at the upper surface

of the viscous fluid layer, at the interface between the fluid and porous medium layers



6 Abdul-Fattah K. Bukhari and Abdullah A. Abdullah

and at the lower boundary of the porous medium layer. Many combination of
boundary conditions are possible but for comparison with Chen and Chen (1988) we

shall assume that x, =d, is rigid and held at constant temperature 7, , whereas
x, =—d,, is assumed to be impenetrable and at constant temperature7,, . In terms of
w,and w, the axial velocity components of the fluid in L,and L, respectively, these

requirements leads to the three conditions

ow,d,) 6H(d )
nld)et,owld)eo,  =ECs0 SEEs0 @
on the top boundary of L,and the conditions
T,(-d,)=T, w,(-d,)=0, -af%'—d’"—)w. (2.12)
3

on the lower boundary of L, where H is the third component of the magnetic field.
The fluid/ porous —medium interface boundary conditions are based on the
assumption that temperature, heat flux and normal fluid velocity are continuous

across the interface. Thus
or,(0) . o7,(0)

7,(0)=7,(0), k, =k, :
ox, ox,
w, (0)=w,(0), -P,(0)+2u awa; ©) =-P,(0), (2.13)
1,0=8,0 2=V 0., o0
" 7 "oy T ow

this leaves two final conditions to be specified on the interface. One of these is related

to the magnetic field which is

0H . (0) _o O, ©) _ 0 2.14)
Ox, O '

b

and the final one is due to Beavers and Joseph (1967) which has the form
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ou, (0) _ Qg o, (0) _ Gy
_ax:"_ﬁ(uf_u”)’ = _R(vf—vm), (2.15)

where u,,v, are the limiting tangential components of the fluid velocity as the

interface is approached from the fluid layer L, , whereas u,,,v, are the same limiting

components of tangential fluid velocity as the interface is approached from the porous

layer L, .

Suppose that the static solution is now perturbed so that the velocity, pressure,

temperature and magnetic field in the fluid and porous layers are respectively

X
v,,  P.+p,, To—(TO—Tu)d—3+0f, He, +h,,
!
and (2.16)

v, P,+p,, T, -(T, —%J;‘iwm.

0 m

In the fluid layer we shall introduce the non-dimensional spatial coordinates x /» time
f s » perturbed velocity v , pressure p,, and temperature 6 , by the definitions

A d}" ﬂ'f A
x=dfxf, tlel_tfa vf::l—vf,
S S
_Mf A

Py —?Pﬂ o, =|T0_Tu|éf-
s

@2.17)

k
where A, is the thermal diffusivity of the fluid phase defined by A ;= (—fr .
PCp ),

- A similar procedure is applied to the porous medium layer in which non-dimensional

spatial coordinates X, , time f, , perturbed velocity ¥, pressure p, magnetic field

I;m and temperature ém are introduced by the definitions
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X d’ . Ay o
x, =d,X,, t, =—"t,, v, =:i—vm,
M ’Iml n (2.18)
Pn =_f-ﬁm’ hm = hm’ 0, =
K M

Where S = sign(T, -T,)= sign(T, ~T,) and hat superscript has been dropped
although the variables are non-dimensional. By taking the curl curl of the momentum
equation in each layer then taking the third component of the equations in each layer.
We now look for a solution of the form

w(t, x) = (//(x3 )exp[i(rx1 +gx, )+ o t]
It follows from equations (2.33) and (2.34) that

Or ~ 2 ) 2 2
—(D; -a; )Wf _O'fQPmlfohf = (D} —af) w, —Ra,a;0, -OD;w,,

Ty
o6, =w, +(D; _a})gf’
O-fPr;llfhf =(D;‘a;)hf+Dfo’ 2.19)
_Dao, D} - -a —o. QOP;) D h =\D-a’ 'w +Ra,af -QD’w,_,
¢ P m mm m'*m m m m mY¥mYm m'’m
v,

_ 2 2
G,0,0, =W, +(Dm -a,

&Pt by =(D2 =2 1, + D,w,.

where the parameters &;, d andk are defined by

T
d

M

-

|
W‘)| Qo

Q>
w‘w
~ |z
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(pc)
and G, =(——T”’ , and
ad|T, -T
P, =__‘i_, Ra, =g__fl°_“, Py, =17_f__
f /?.f v/if f lf
1% gaKd T, -T,
Prm =T Da=_2, = fll Ol,
A, d; VA,
M pH,d,
Pmm =1—_’ =4—-
m pomnm

where a;, =7, +4,, a; =r} +q} are non-dimensional wave numbers in the porous

9 ;

medium and fluid layers respectively and where D( )= ™
3

A

2
o, = p o, - The final boundary conditions are:

Upper boundary x, =1
w, =0, D,w, =0, 0, =0, D, h

Middle boundary x, =0

0, =¢.0 D6,=D,6,, w, =& W,

m?

A

k 1
h,=—h,,  Dh, =——D,h,

~ m
n &ph

eTc?[waf —MwafJ =D,w,,
Ay

Da o,
¢ b

m

6}3 D 3 2 Oy _
&;Da waf—3afowf—P—D w, |=+

na +1)mem.
Yy

Lower boundary x, = -1

(), af=dam s

= 0. (2.20)

2.21)
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w, =0, 6,=0, D,h,=0. (2.22)

3. RESULTS AND DISCUSSION

The eigenvalue problem consist of a eight order ordinary differential equation
in the fluid layer and a six order ordinary differential equation in the porous layer

with 14 boundary conditions. This problem is solved using spectral method based on

series expansion of Chebyshev polynomials. In producing the results, o ;and o, are

set to zero identically which corresponds to the stationary convection instability,

where the relation between o ,and o, are given by

Numerical results and stability curves are obtained for the problem, with thermal

conductivity ratio k=143 , Darcy number = 4x10™ , Beavers-Joseph constant
a,, = 0.1 and for a variety reciprocal depth ratio ranging from 0.33 to 0.1. the results
of thié paper are illustrated in figures (1) — (4). They are qualitatively and quantitively
similar to those produced by Bukhari (1997) in the absence of magnetic field in both
layers. Bukhari has showed that the numerical results produced by Chen and Chen
(1988) have a large rounding error due to the method used which is a 4th order
Runge-Kutta method and he showed that the spectral methods have a strong ability to
solve the multi-layered problems and produces accurate results.

Figure (1) shows the relation between a,, and Ra,, for different values of the

depth ratio of d when the Chandrasekhar number Q=100. it is clear from the figure

that the Rayleigh number in the porous layer decreases continuously as the thickness

of the layer increases. The results corresponding to Q@ =500,1000,10000 are

displayed in figures (2)- (4) respectively. It is clear from these figures that the
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Rayleigh number increases as the Chandrasekhar number increases. i.e. the magnetic

field has a stabilizing on the system.
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