• Title/Summary/Keyword: spectral expansion

Search Result 82, Processing Time 0.034 seconds

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

Impedance Characteristics of an Expansion-Resonator Type Pulsation Attenuator(Attenuation on Flow and Pressure Ripple form a Hydraulic Piston Pump) (팽창 공명기형 맥동 감쇠기의 임피던스 특성(유압용 피스톤 펌프의 유량.압력맥동 감쇠))

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.88-95
    • /
    • 2000
  • In this paper, an expansion-resonator type pulsation attenuator is proposed to absorb and attenuate flow an pressure ripple with high frequencies generated from hydraulic control systems. The basic principle of a pulsation attenuator proposed here is applied to propagation, reflection, absorption of pressure waves at the cross section of discontinuity and resonance in the pipeline. It has advantage of the compact size and high degree fo freedom for installation in hydraulic systems. The design scheme based on distributed parameter pipeline system with dissipative viscous compressible model is developed. To investigate the reduction of flow and pressure ripple with high frequencies produced by swash plate type axial piston pump, two kinds of attenuators are manufactured. It is experimently confirmed that the spectral intensity of flow and pressure ripple with high frequencies from the pump are reduced up to about 20$^{\circ}$~30dB by using attenuators proposed here. The calculated results were in good agreement with the measured values. From there sults of this study, it is shown that an expansion-resonator type pulsation attenuator is effective in a wide frequency ranges to attenuate the flow and pressure ripple from hydraulic components.

  • PDF

A Spectral Inverse Scattering Technique by Using the Moment Method with Series-Expanded Basis Function : Noise Effect (급수전개된 기저함수를 갖는 모멘트방법에 의한 파수영역의 역산란 방법 : 잡음의 영향)

  • 최현철;김세윤;라정웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.214-223
    • /
    • 1996
  • Noise effects on image profiles reconstructed by the spectral inverse scattering technique is studied based on moment method with series-expanded basis function. It is found that the Fourier series expansion to the field distribution and the averaging of the reconstructed profile in each enlarged cell provides an effective tool for the reduction of noise effects.

  • PDF

A Numerical Study on the Fluid Flow Past a Cylinder with a Periodic Array of Circular Fins (원형 핀이 부착된 실린더 주위의 유체 유동에 관한 수치적 연구)

  • Lee, Dong-Hyuk;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1344-1351
    • /
    • 2005
  • Three-dimensional, time-dependent solutions of fluid flow past a circular cylinder with a periodic array of circular fins are obtained using an accurate and efficient spectral multidomain methodology. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multidomain method with Chebyshev collocation is used along the r-z plane to handle the periodic array of circular fins attached to the surface of the cylinder. Unlike the flow past a circular cylinder, Second instabilities like mode A and mode B are not found in the Reynolds number range $100\~500$. It is found that three-dimensional instability of vortical structures is suppressed due to the presence of fin. The present numerical solutions report the detailed information of flow quantities near wake of finned cylinder.

E-Polarized Reflection Coefficient by a Tapered Resistive Strip Grating with Infinite Resistivity at Strip-Edges (저항면의 양 끝에서 무한대로 변하는 저항률을 갖는 조기격자에 의한 E-분극 반사계수)

  • 윤의중;양승인
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.60-66
    • /
    • 1994
  • The scattering problem by E-polarized plane wave with oblique incidence on a tapered resistive strip grating with infinite resistivity at strip-edges is analyzed by the method of moments in the spectral domain. Then the induced surface current density is expanded in a series of Ultraspherical polynomials of the zeroth order. The expansion coefficients are calculated numerically in the spectral domain, the numerical results of the geometricoptical reflection coefficient for the tapered resistivity in this paper are compared with those for the existing uniform resistivity. And the position of sharp variation points in the magnitude of the geometric-optical reflection coefficient can be moved by varying the incident angle and the strip spacing. It is found out that these sharp variation points are due to the transition of higher modes between the propagation mode and the evanescent mode.

  • PDF

SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES

  • Mengestie, Tesfa
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1801-1816
    • /
    • 2017
  • We study some spectral properties of Volterra-type integral operators $V_g$ and $I_g$ with holomorphic symbol g on the Fock-Sobolev spaces ${\mathcal{F}}^p_{{\psi}m}$. We showed that $V_g$ is bounded on ${\mathcal{F}}^p_{{\psi}m}$ if and only if g is a complex polynomial of degree not exceeding two, while compactness of $V_g$ is described by degree of g being not bigger than one. We also identified all those positive numbers p for which the operator $V_g$ belongs to the Schatten $S_p$ classes. Finally, we characterize the spectrum of $V_g$ in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g.

Using MZIs for Optical PSBT Transmissions: Requirements for Thermal Stabilization

  • Ducournau, Guillaume;Latry, Olivier;Ketata, Mohamed
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.615-620
    • /
    • 2006
  • In this paper, we discuss the quantification of Mach-Zehnder interferometer (MZI) thermal stabilization which is needed in optical phase shaped binary transmission (PSBT) links. Considering the thermo-optic and thermal expansion effects, we revisit the analytical expression for the thermal drift (GHz/$^{\circ}C$) of the MZI center frequency (denoted here by the 'MZI spectral drift'). An MZI is then used in an experimental transmission system using the optical PSBT format. We study the effect of spectral MZI drift by using a thermally stabilized interferometer and applying a frequency shift to the optical carrier. By using the thermal drift coefficient of the MZI, we find that to ensure low bit error rate fluctuations due to the MZI drift, the thermal stabilization of the device must have an accuracy of $0.5^{\circ}C$.

  • PDF

E-Polarized Scattering by a Resistive Strip Grating (저항판 스트립 회절격자에 의한 E-분극산란)

  • 윤의중;양승인
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.4
    • /
    • pp.20-27
    • /
    • 1993
  • The E-polarized scattering problem by a resistive strip grating is analyzed by the method of moments in the spectral domain. For an E-polarized scattering, the induced current density is expected to blow up at both edges. Then the induced surface current density on the strip is expanded in a series of the multiplication of Ultraspherical polynomials with zeroth order and functions with appropriate edge condition. The expansion coefficients are calculated numerically in the spectral domain. When the resistivity of the strip becomes 0, the numerical results agree with those of a perfectly conducting strip srating. And the convergence of the moment-method solutions is very much improved using the basis functions proposed in this paper, compared with that of the existing exponential functions.

  • PDF

Multiple change-point estimation in spectral representation

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.127-150
    • /
    • 2022
  • We discuss multiple change-point estimation as edge detection in piecewise smooth functions with finitely many jump discontinuities. In this paper we propose change-point estimators using concentration kernels with Fourier coefficients. The change-points can be located via the signal based on Fourier transformation system. This method yields location and amplitude of the change-points with refinement via concentration kernels. We prove that, in an appropriate asymptotic framework, this method provides consistent estimators of change-points with an almost optimal rate. In a simulation study the proposed change-point estimators are compared and discussed. Applications of the proposed methods are provided with Nile flow data and daily won-dollar exchange rate data.