• Title/Summary/Keyword: spectral band

Search Result 873, Processing Time 0.028 seconds

Chromatic Dispersion Compensation via Mid-span Spectral Inversion with Periodically Poled $LiNbO_3$ Wavelength Converter at Low Pump Power

  • Kim, Min-Su;Ahn, Joon-Tae;Kim, Jong-Bae;Ju, Jung-Jin;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.312-318
    • /
    • 2005
  • Mid-span spectral inversion (MSSI) has to utilize high optical pump power, for its operation principle is based on a nonlinear optical wavelength conversion. In this paper, a low pump-power operation of MSSI-based chromatic dispersion compensation (CDC) has been achieved successfully, for the first time to our knowledge, by introducing a noise pre-reduction scheme in cascaded wavelength conversions with periodically poled $LiNbO_3$ waveguides at a relatively low operation temperature. As preliminary studies, phase-matching properties and operation-temperature dependence of the wavelength converter (WC) were characterized. The WC pumped at 1549 nm exhibited a wide conversion bandwidth of 59 nm covering the entire C-band and a conversion efficiency of -23.6 dB at 11 dBm pump power. CDC experiments were implemented with 2.5 and 10 Gb/s transmission systems over 100 km single-mode fiber. Although it is well-known that the signal distortion due to chromatic dispersion is not critical at a 2.5 Gb/s transmission, the clear recovery of eye patterns was identified. At 10 Gb/s transmission experiments, eye patterns were retrieved distinctly from seriously distorted ones, and notable improvements in bit-error rates were acquired at a low pump power of 14 dBm.

  • PDF

Binary Power Amplifier with 2-Bit Sigma-Delta Modulation Method for EER Transmitter

  • Lim, Ji-Youn;Cheon, Sang-Hoon;Kim, Kyeong-Hak;Hong, Song-Cheol;Kim, Dong-Wook
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.377-382
    • /
    • 2008
  • A novel power amplifier for a polar transmitter is proposed to achieve better spectral performance for a wideband envelope signal. In the proposed scheme, 2-bit sigma-delta (${\Sigma}{\Delta}$) modulation of the envelope signal is introduced, and the power amplifier configuration is modified in a binary form to accommodate the 2-bit digitized envelope signals. The 2-bit ${\Sigma}{\Delta}$ modulator lowers the noise of the envelope signal by fine quantization and thus enhances the spectral property of the RF signal. The Ptolemy simulation results of the proposed structure show that the spectral noise is reduced by 10 dB in a full transmit band of the EDGE system. The dynamic range is also enhanced. Since the performance is improved without increasing the over-sampling ratio, this technique is best suited for wireless communication with high data rates.

  • PDF

Study on Birefringence Effect Of Single-Mode Fiber on Output Spectra of High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Configuration (단일 모드 광섬유의 복굴절이 편광상이 배치구조 기반 고차 광섬유 빗살 필터의 출력 스펙트럼에 미치는 영향에 대한 고찰)

  • Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.8-15
    • /
    • 2012
  • In this paper, we investigated possible optical parameters causing deviation of experimentally observed output spectra from theoretically predicted results in a high-order fiber comb filter based on a polarization-diversity loop configuration. They include wavelength dependency of half-wave plates (HWPs) inserted in the filter for wavelength switching and the modal birefringence of single-mode fibers (SMFs) with which optical components comprising the filter are connected. In order to consider the effect of the modal birefringence of the SMF on a filter performance, it is modeled as a low birefringence fiber with an arbitrary orientation angle and birefringence. It is found from the simulation results that the modal birefringence of SMFs strongly affects the spectral characteristics of the filter and decreases the extinction ratio of the filter, compared with the wavelength dependency of HWPs. In particular, it is also confirmed that the spectral deviation and asymmetric distortions of side-lobes in narrow band transmission spectra result mainly from the modal birefringence of SMFs.

A NEW METHOD OF MASKING CLOUD-AFFECTED PIXELS IN OCEAN COLOR IMAGERY BASED ON SPECTRAL SHAPE OF WATER REFLECTANCE

  • Fukushima, Hajime;Tamura, Jin;Toratani, Mitsuhiro;Murakami, Hiroshi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.25-28
    • /
    • 2006
  • We propose a new method of masking cloud-affected pixels in satellite ocean color imageries such as of GLI. Those pixels, mostly found around cloud pixels or in scattered cloud area, have anomalous features in either in chlorophyll-a estimate or in water reflectance. This artifact is most likely caused by residual error of inter-band registration correction. Our method is to check the pixel-wise 'soundness' of the spectral water reflectance Rw retrieved after the atmospheric correction. First, we define two spectral ratio between water reflectance, IRR1 and IRR2, each defined as RW(B1)/RW (B3) RW (B3) and as RW (B2)/RW(B4) respectively, where $B1{\sim}B4$ stand for 4 consecutive visible bands. We show that an almost linear relation holds over log-scaled IRR1 and IRR2 for shipmeasured RW data of SeaBAM in situ data set and for GLI cloud-free Level 2 sub-scenes. The method we propose is to utilize this nature, identifying those pixels that show significant discrepancy from that relationship. We apply this method to ADEOS-II/GLI ocean color data to evaluate the performance over Level-2 data, which includes different water types such as case 1, turbid case 2 and coccolithophore bloom waters.

  • PDF

EMI reduction of PWM converter By Binary Switching Frequency Modulation (2진 스위칭 주파수 변조에 의한 PWM 컨버터의 EMI 저감)

  • Jin, In-Su;Park, Seok-Ha;Yang, Kyeong-Rok;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2650-2652
    • /
    • 1999
  • To satisfy the demand for small size, light weight. high density power supply, the switching frequency of DC/DC converters has been increased. The PWM control of the conventional SMPS have a switching frequency that a level of the conducted noise spectra contribute to switching frequency band. So the electronic equipment is not only affected from that but is restricted to internal regulation like CISPR, FCC, and VDE. In this paper, we analyzed Bi-FM. Bi-FM is two fixed switching frequency with a modulation frequency. So emission spectrum of Bi-FM control signal is spreaded and spectral power level is reduced. In this paper, we analyze the spectral analysis of Bi-FM control signal and the spectral comparison between the PWM control and Bi-FM control. And we confirm that reduced the spectrum power level through simulation using Pspice and experiment.

  • PDF

Parameter of intencity DN Transformation between Aerial image and Terrestrial image (항공영상과 지상영상간 밴드별 변환 파라미터 산정)

  • Heo, Kyung-Jin;Seo, Su-Young
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.130-136
    • /
    • 2010
  • This study estimates and evaluates the parameters to relate spectral intensities of aerial and terrestrial images through spectral analysis of each band. For the experiment, an aerial image covering the headquater of the Kyungpook National University was used and terrestrial images were taken by the Sony DSC-F828 DSLR camera. For finding the spectral correspondence, gray intensity, RGB variance, mean, standard deviation were computed, from which parameters of a linear model between patches of both images were computed and evaluated using check patches.

  • PDF

An Experimental Study on Combustion Characteristics of Radiant Burner (복사 버너의 연소특성에 관한 실험적 연구)

  • Wie, Jae-Hyug;Lee, Dae-Rae;Kim, Young-Soo;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.19-25
    • /
    • 2006
  • Energy efficient and low pollution combustion systems the use gaseous fuels have been in great demand in recent year. Radiant burner in many different forms are emerging as very desirable combustion systems for same reason. Porous radiant burners are used in drying, preheating and curing, and in other type of materials processing and manufacturing processes. However, little knowledge is available about the operating characteristics and the structure of flames in porous ceramic fiber radiant burners. The objective of the present work is to investigate the global performance characteristics of the ceramic fiber burner. A detailed study which includes the spectral intensity, gas temperature, radiation efficiency and global pollutant emissions. Another objective is to study the flame structure of the ceramic fiber burner by measuring the local gas temperature. The results indicate that ceramic fiber burner do offer a 19-44% gain in radiant efficiency. The ceramic fiber burner exhibit significant spectral intensity peaks in the band at $2.0-2.5{\mu}m$. The local temperature distribution inside the mat and near the mat surface as a function of the equivalence ratio can be reasonably interpreted by the relation of the heat balance in the mat and movement of the reaction zone. Nox emission from ceramic fiber burner is less than 25ppm throughout the operating range.

  • PDF

Highly Simplified and Bandwidth-Efficient Human Body Communications Based on IEEE 802.15.6 WBAN Standard

  • Kang, Tae-Wook;Hwang, Jung-Hwan;Kim, Sung-Eun;Oh, Kwang-Il;Park, Hyung-Il;Lim, In-Gi;Kang, Sung-Weon
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1074-1084
    • /
    • 2016
  • This paper presents a transmission method for improving human body communications in terms of spectral efficiency, and the performances of bit-error-rate (BER) and frame synchronization, with a highly simplified structure. Compared to the conventional frequency selective digital transmission supporting IEEE standard 802.15.6 for wireless body area networks, the proposed scheme improves the spectral efficiency from 0.25 bps/Hz to 1 bps/Hz based on the 3-dB bandwidth of the transmit spectral mask, and the signal-to-noise-ratio (SNR) by 0.51 dB at a BER of $10^{-6}$ with an 87.5% reduction in the detection complexity of the length of the Hamming distance computation. The proposed preamble structure using its customized detection algorithm achieves perfect frame synchronization at the SNR of a BER of $10^{-6}$ by applying the proposed pre-processing to compensate for the distortions on the preamble signals due to the band-limit effects by transmit and receive filters.

Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.

Reinforcing Stethoscope Sound using Spectral Shift (스펙트럼 이동을 이용한 청진음 강화)

  • Jung, Dong Keun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 2021
  • Human hearing sensitivity is frequency-dependent. The sensitivity is low at both ends of the audible frequency, and the sensitivity is the highest in the middle band at 3000 Hz. The heart sound of a healthy person is concentrated at a low frequency of 200 Hz or less, and despite using a stethoscope, the hearing sensitivity of the human body is low, and the stethoscope sound is low. Amplifying the sound of the stethoscope is not effective in distinguishing heart sounds in noisy environments because it maintains the same signal-to-noise ratio. In this study, a method of enhancing auditory stimulation was developed by applying a method of moving the spectrum of auscultation sounds into a high-frequency region where the human body is highly sensitive to hearing. The spectrum of the auscultation sound was moved up by 500 Hz in the frequency domain, and an inverse fast Fourier transform (FFT) was performed to reconstruct the auscultation sound. The heart sounds reconstructed by moving the spectra were divided into the first heart and second heart sound components, as in the original heart sound, and it was confirmed that the intensity was large in the cochleagram representing auditory stimulation. Therefore, this study suggested that spectral shift is a method to enhance auditory stimulation during auscultation without increasing the intensity of the auscultation sound.