• Title/Summary/Keyword: specimen condition

Search Result 1,169, Processing Time 0.025 seconds

Effect of Surface Condition on Tensile Properties of Fe-30Mn-0.2C-(1.5Al) High-Manganese Steels Hydrogen-Charged Under High Temperature and Pressure (고온-고압 수소 주입된 Fe-30Mn-0.2C-(1.5Al) 고망간강의 인장 거동에 미치는 표면 조건의 영향)

  • Lee, Seung-Yong;Lee, Sang-Hyeok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.318-324
    • /
    • 2017
  • In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogen-charged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C-1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen.

A Study on the Antibacterial Properties of Ag Electropulsed Anodized Aluminium Alloy (Pulse도금법에 의한 Ag주입 양극산화 알루미늄 합금의 항균특성에 관한 기초연구)

  • Lim, Ki-Young;Ki, Joon-Seo;Jang, Yong-Seok;Lee, Woo-Min;Yoon, Jeong-Mo
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.639-646
    • /
    • 2006
  • Over the last two decades, microbiologically influenced corrosion (MIC) of metallic materials has received considerable attention due to its serious effects on industrial field. In this context, it is important to devise control methods which inhibit biofilm formation on various metallic compounds and are compatible with environment. It was change of various conditions (duty cycle, current density, $AgNO_3$ concentration and pH) for injection of Ag particles in anodized Aluminum alloy pore using pulsed current. Optimal condition was obtained by means of FE-SEM, ICP analysis etc. The antibacterial metal's specimen were manufactured under optimal condition and this specimen were tested the antibacterial characterization and anticorrosion characterization. In result of test, we can confirmed that the antibacterial characterization and anticorrosion characterization of the specimens of injected Ag particles in anodized Aluminum alloy pore using pulsed current were better than the anodized Aluminum alloy specimens.

A Study on Evaluation of Residual Stress Redistribution for FCA Butt Weldment of Ultra-Thick YP47 Steel Plate under Tensile Cyclic Load (반복 인장 하중을 받는 YP47 극후판 Butt 용접부의 잔류응력 재분포에 관한 연구)

  • Kang, Bong Gook;Lee, Dong Ju;Shin, Sang Beom
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.28-33
    • /
    • 2016
  • The purpose of this study is to evaluate the redistribution of transverse residual stress in the multi-pass FCA butt weld of YP47 in the hatch coaming top plate of ultra large size containership under the tensile cyclic load. In order to do it, the configuration of modified H type specimen including restraint length was first designed to simulate the restraint condition of the butt weld in hatch coaming top plate. FE analysis procedure for evaluating the transverse residual stress was verified by comparing the calculated mean and surface residual stresses with the measured results in the test specimen. After that, the effect of the cyclic load on the redistribution of transverse residual stress was evaluated by comprehensive FEA. From the results, it was found that although the maximum transverse residual stress decreased with an increase in the applied maximum load, the effect of the cyclic load on the mean residual stress is small enough to be negligible. It is because the maximum stress of the ship corresponding to the probability of 10E-8 is less than 70% of yield stress of the weld.

Acoustic Emission from Fatigue Crack Extension in Corroded Aluminum Alloys (부식된 알루미늄 합금의 피로균열진전에서 얻어진 음향방출)

  • Nam Kiwoo;Lee Jonnrark
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • The main objective of this study is to determine if the sources of AE in corroded specimens of aluminum could be identified iron the characteristics of the waveform signals recorded during fatigue loading. Coupons of notched 2024-T3 aluminum with or without corrosion (at the notch) were subjected to fatigue loading and the AE signals were recorded using non-resonant, flat, wide-band transducers. The time history and power spectrum of each individual wave signal recorded during fatigue crack growth were examined and classified according to their special characteristics. Five distinct types of signals were observed regardless of specimen condition. The waveform and power spectra were shown to be dependent on specimen condition. During the initial phase of crack growth, the signals obtained in the as-received specimens are most probably due to transgranular cleavage caused by extrusion and intrusion under fatigue loading. In the corroded specimen the signal are probably generated by intergranular cleavage due to embrittlement of grain boundary neat the pitting tip. The need for additional research to further validate these findings is indicated.

  • PDF

Wear Property of SACM645 Material with DLC Coating (DLC 코팅된 SACM645 소재의 마모 특성)

  • Kim, Nam-Soek;Nam, Ki-Woo;Park, Jong-Nam;Ahn, Seok-Hwan;Kim, Hyun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.76-80
    • /
    • 2010
  • Oil hydraulic piston pumps are being extensively used around the world, because of their simple design, light weight, effective cost, etc. An oil hydraulic pump is likely to have the serious problems of high leakage, friction, and low energy efficiency after a long period of use. In an oil hydraulic piston pump, the clearance between the valve block and piston plays an important role for volumetric and overall efficiency. In this study, the wear property of the SACM645 material with DLC coating used for a hydraulic piston pump was determined by experimentation with variable heat treatment. To investigate the effect according to the piston surface condition, five different types of specimens were prepared. The maximum tensile strengths of the QT and QT Nitration specimens had similar values of about 800 MPa, but the strains indicated a big difference. In a wear test, the wear characteristic of the DLC coating specimen was shown to be excellent. The QT, QT + IH, QT + Nitration, and matirx specimen showed similar wear characteristics. In the case of a dry condition without oil, the DLC coating specimen had good wear resistance, with no wear shown.

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

Effects of Axial Misalignments on the Torque Specimens Using Finite Element Analysis (유한요소해석기법을 이용한 토크 시편의 축 오열 영향 분석)

  • Kim, Ju-Hee;Kim, Yun-Jae;Huh, Yong-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1461-1469
    • /
    • 2011
  • Using three-dimensional (3-D) FE analyses, this paper provides a method for analyzing the effects on stresses and strains produced by angular and concentric misalignment of a test specimen for a torsion test. To quantitativele compare of the FE results, the average bending strain for the angular, concentric, and combined misalignment was proposed. To verify the effects of axial misalignment of the test specimens, we used both circular and tubular specimens. From the FE results, we proposed general predictions for the effects caused by the various types of axial misalignment and its direction. In addition, we confirmed the effect of initial yielding moment based on the initial yielding condition for axial misalignment of specimens in torsion tests.

Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder (Rotating cylinder를 이용한 탄소강의 유동가속부식 평가)

  • Park, Tae Jun;Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

An Experimental Study on the Evaluaiton of Elastic-Plastic Fracture Toughness under Mixed Mode I-II-III Loading Using the Optical PSD (PSD를 이용한 혼합모드 하중하에서 탄소성 파괴인성평가에 관한 실험적인 연구)

  • Kim, Hei-Song;Lee, Choon-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1263-1274
    • /
    • 1996
  • In this paper, as elastic-plastic fracture toughness test under mixed mode loading was proposed using a single edge-cracked specimen subjected to bending moment(M), shearing force(F), and twisting moment(T). The J-integral of a crack in the specimen is expressed in the form J=$J_I$+ $J_II$$J_III$, where $J_I$, $J_II$ and $J_III$ are the components of mode I, mode II and mode III deformation, respectively. $J_I$, $J_II$ and $J_III$ can be estimated from M-$\theta$ ($\theta$;crack opening angle), F-U(U; crack shear displacement) and T-$\alpha$ ($\alpha$;crack twisting angle). In order to obtain the the M<-TEX>$\theta$, F-U and T-$\alpha$ diagram inreal time, a new deformaiton gage for mixed mode loading was proposed using the optical position sensing device(PSD). The elastic-plastic fracture toughness test was carried out with an aluminum alloy. The loading apparatus was designed and manufactured for this experiment. For the loading condition of the crack initatio in the mixed mode, the MMT -3(mode I+ mode II+ mode III) has the lowest values out of the all specimens. This implies that MMT-3 is possible of the crackinitation at lower load, if the specimen acts on together with the torque under the same loading condition. An elastic-plastic fracture toughness test using the PSD brings a successful experimentation in measuring the crack deformation(mode I+ mode II+ mode III).

Corrosion and mechanical properties of hot-rolled 0.5%Gd-0.8%B-stainless steels in a simulated nuclear waste treatment solution

  • Jung, Moo Young;Baik, Youl;Choi, Yong;Sohn, D.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.207-213
    • /
    • 2019
  • Corrosion and mechanical behavior of the hot-rolled 0.5%Gd-0.8%B-stainless steel to develop a spent nuclear fuel storage material was studied in a simulated nuclear waste treatment condition with rolling condition. The austenite and ferrite phases of the 0.5%Gd-0.8%B-stainless steels are about 88:12. The average austenite and ferrite grain size of the plane normal to rolling, transverse and normal directions of the hot rolled specimens are about 5.08, 8.94, 19.35, 23.29, 26.00 and 18.11 [${\mu}m$], respectively. The average micro-hardness of the as-cast specimen is 200.4 Hv, whereas, that of the hot-rolled specimen are 220.1, 204.7 and 203.5 [$H_v$] for the plane normal to RD, TD and ND, respectively. The UTS, YS and elongation of the as-cast and the hot-rolled specimen are 699, 484 [MPa], 34.0%, and 654, 432 [MPa] and 33.3%, respectively. The passivity was observed both for the as-cast and the hot rolled specimens in a simulated nuclear waste solution. The corrosion potential and corrosion rate of the as-casted specimens are $-343[mV_{SHE}]$ and $3.26{\times}10^{-7}[A/cm^2]$, whereas, those of the hot rolled specimens with normal to ND, RD and TD are -630, -512 and -620 [$mV_{SHE}$] and $6.12{\times}10^{-7}$, $1.04{\times}10^{-6}$ and $6.92{\times}10^{-7}[A/cm^2]$, respectively. Corrosion tends to occur preferentially Cr and B rich area.