Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.6.318

Effect of Surface Condition on Tensile Properties of Fe-30Mn-0.2C-(1.5Al) High-Manganese Steels Hydrogen-Charged Under High Temperature and Pressure  

Lee, Seung-Yong (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Lee, Sang-Hyeok (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.6, 2017 , pp. 318-324 More about this Journal
Abstract
In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogen-charged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C-1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen.
Keywords
high-manganese steel; hydrogen embrittlement; high temperature and pressure; surface condition; tensile property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Yamashita, M. Kondo, S. Goto and N. Ogami, SAE Technical Paper, p 1169 (2015).
2 T. Yoshida and K. Kojima, Electrochem. Soc. Interface, 24, 45 (2015).
3 T. Michler, J. Naumann, J. Wiebesiek and E. Scattler, Int. J. Fatigue, 96, 67 (2017).   DOI
4 T. Omura and J. Nakamura, ISIJ Int., 52, 234 (2012).   DOI
5 L. Zhang, M. Wen, M. Imade, S. Fukuyama and K. Yokogawa, Acta Mater., 56, 3414 (2008).   DOI
6 T. Michler, A. A. Yukhimchuk and J. Naumann, Corr. Sci., 50, 3519 (2008).   DOI
7 T. Michler, C. San Marchi, J. Naumann, S. Weber and M. Martin, Int. J. Hydrogen Energy, 37, 16231 (2012).   DOI
8 M. P. Phaniraj, H. J. Kim, J. Y. Suh, J. H. Shim, S. J. Park and T. H. Lee, Int. J. Hydrogen Energy, 40, 13635 (2015).   DOI
9 Y. H. Kim, J. H. Kim, T. H. Hwang, J. Y. Lee and C. Y. Kang, Met. Mater. Int., 21, 485 (2015).   DOI
10 B. Kim, T. T. T. Trang and N. J. Kim, Met. Mater. Int., 20, 35 (2014).   DOI
11 B. Hwang, T. H. Lee, S. J. Park, C. S. Oh and S. J. Kim, Mater. Sci. Eng. A, 528, 7257 (2011).   DOI
12 I. J. Park, K. H. Jeong, J. G. Jung, C. S. Lee and Y.-K. Lee, Int. J. Hydrogen Energy, 37, 9925 (2012).   DOI
13 D. K. Han, S. K. Lee, S. J. Noh, S. K. Kim and D. W. Suh, Scr. Mater., 99, 45 (2015).   DOI
14 K. G. Chin, C. Y. Kang, S. Y. Shin, S. Hong, S. Lee, H. S. Kim, K. H. Kim and N. J. Kim, Mater. Sci. Eng. A, 528, 2922 (2011).   DOI
15 J. H. Ryu, S. K. Kim, C. S. Lee, D. W. Suh and H. K. D. H. Bhadeshia, Proc. R. Soc. A., 469, 2149 (2013).
16 A. I. Gromov and Y. K. Kovneristyi, Met. Sci. Heat Treat., 22, 321 (1980).   DOI
17 T. Angel, J. Iron Steel Inst., 177, 165 (1954).
18 T. Hirayama and M. Ogirima, J. Jpn. Inst. Met., 34, 507 (1970).   DOI
19 B. C. De Cooman, J. K. Kim and K. H. Chin, High Mn TWIP Steels for Automotive Applications, INTECH Open Access Publisher (2011).
20 C. D. Beachem, Metall. Trans., 3, 437 (1972).
21 D. P. Abraham and C. J. Altstetter, Metall. Mater. Trans. A, 26, 2849 (1995).   DOI
22 K. Yamada, M. Koyama, T. Kaneko and K. Tsuzaki, Scripta Mater., 105, 54 (2015).   DOI