• Title/Summary/Keyword: specific plant

Search Result 2,636, Processing Time 0.026 seconds

The phosphoinositide-specific phospholipase C gene, MPLCl, of Magnaporthe grisea is required for fungal development and plant colonization

  • Park, Hee-Sool;Lee, Yong-Hwan
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.84.1-84
    • /
    • 2003
  • Magnaporthe grisea, the casual agent of rice blast, forms an appressorium to penetrate its host. Much has been learned about environmental cues and signal transduction pathways, especially those involving CAMP and MAP kinases, on appressorium formation during the last decade. More recently, pharmacological data suggest that calcium/calmodulin-dependent signaling system is involved in its appressorium formation. To determine the role of phosphoinositide-specific phospholipase C (PI-PLC) on appressorium formation, a gene (WPLCl) encoding PI-PLC was cloned and characterized from M. grisea strain 70-15. Sequence analysis showed that MPLCl has alt five conserved domains present in other phospholipase C genes from several filamentous fungi and mammals. Null mutants (mplcl) generated by targeted gene disruption exhibited pleiotropic effects on conidial morphology, appressorium formation, fertility and pathogenicity. mplcl mutants developed nonfunctional appressoria and are also defective in infectious growth in host tissues. Defects in appressorium formation and pathogenicity in mplcl mutants were complemented by a mouse PLCdelta-1 cDNA under the control of the MPLCl promoter. These results suggest that cellular signaling mediated by MPLCl plays crucial and diverse roles in development and pathogenicity of M. grisea, and functional conservation between fungal and mammalian Pl-PLCs.

  • PDF

Development of CO2 Emission Factor by Fuel and CO2 analysis at Sub-bituminous Fired Power Plant (연료와 CO2 농도분석을 이용한 아역청탄 화력발전소의 온실가스 배출계수 개발)

  • Jeon, Eui-Chan;Sa, Jae-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.128-135
    • /
    • 2010
  • The main purpose of this study was to develop the greenhouse gas emission factor for power plant using sub-bituminous coal. In Korea, Fired power plant are a major source of greenhouse gases within the fossil fuel combustion sectors, thus the development of emission factors is necessary to understand the characteristics of the national specific greenhouse gas emission and to develop nation specific emission factors. These emission factors were derived from the $CO_2$ concentrations measurement from stack and fuel analysis of sub-bituminous coal. Caloric value of sub-bituminous coal used in the power plants were 5,264 (as received basis), 5,936 (air-dried basis) and 6,575 kcal/kg (dry basis). The C emission factors by fuel analysis and $CO_2$ concentration measurement was estimated to be 26.7(${\pm}0.9$), 26.3(${\pm}2.8$)tC/MJ, respectively. Our estimates of C emission factors were comparable with IPCC default value.

Multiplex PCR Assay for Simultaneous Detection of Korean Quarantine Phytoplasmas

  • Kim, Young-Hwan;Win, Nang Kyu;Back, Chang-Gi;Yea, Mi-Chi;Yim, Kyu-Ock;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.367-371
    • /
    • 2011
  • Multiplex PCR assays were developed for the simultaneous detection of ten important Korean quarantine phytoplasmas. The species-specific primers were designed based on ribosomal protein, putative preprotein translocase Y, immunodominant protein, elongation factor TU, chaperonin protein and the 16S rRNA genes of 'Candidatus (Ca.) Phytoplasma' species. Three main primer sets were prepared from ten designed primer pairs to limit nonspecific amplification as much as possible. The multiplex PCR assay using the three primer sets successfully amplified the correct conserved genes for each 'Ca. Phytoplasma' species. In addition, ten important 'Ca. Phytoplasma' species could be easily determined by recognizing band patterns specific for each phytoplasma species from three primer sets. Moreover, a high sensitivity of multiplex PCR for each primer set was observed for samples containing a low DNA concentration (10 ng/${\mu}l$). This study provides the useful multiplex PCR assay as a convenient method to detect the presence of ten important quarantine phytoplasmas in Korea.

Vascular Plants of Status and Distribution of the Site around and Kwangyang Manufacture (광양제철소와 인근주변의 관속식물 현황과 분포)

  • Oh, Hyun-Kyung;Kim, Do-Gyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.59-75
    • /
    • 2006
  • The vascular plants of this site was listed 360 taxa; 86 families, 229 genera, 311 species, 42 varieties and 7 forms. Specific plant species by floral region were total 40 taxa; 2 taxa(Crypsinus hastatus, Prunus yedoensis) in class V, Patrinia rupestris in class IV, 6 taxa(Elymus mollis, Carex laticeps, Poncirus trifoliata, Melia azedarach var. japonica, Koelreuteria paniculata, Crepiastrum lanceolatum) in class III, Cirsium schantarense in class II, 30 taxa(Lygodium japonicum, Pteris multifida, Phacelurus latifolius, Asparagus cochinchinensis, Ficus erecta, Machilus thunbergii, Zanthoxylum planispinum, Euphorbia esula, Mallotus japonicus, Cayratia japonica, Camellia japonica, Glehnia littoralis, Lysimachia fortunei, Messerschmidia sibirica, Ixeris repens etc.) in class I. The naturalized plants in this site were 14 families, 34 genera, 41 species, 1 varieties, 42 taxa and naturalization rate was 20.3% of all 207 taxa vascular plants. Based on the list of the rare plants by the Forest Research Institute, 2 taxa were recorded in the studied areas; Phacelurus latifolius, Crypsinus hastatus and based on the list of Korean endemic plants, 7 taxa were recorded; Populus tomentiglandulosa, Filipendula glaberrima, Prunus yedoensis, Forsythia koreana, Paulownia coreana, Weigela subsessilis, Carpinus coreana. So, wild plants disturbing ecosystem like Solanum carolinense and Ambrosia artemisiifolia var. elatior have been increasing, it needs continuing control and conservation measures on the plant ecosystem.

The Study on denitrification of low organic loading sewage by pre-denitrification process (유기물부하가 낮은 하수의 전달탈질공법에 의한 탈질방안)

  • Lee, Cheol Seung;Seo, Jong Hwan;Kim, Jin U
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.779-878
    • /
    • 2004
  • This study was conducted to analyze the operating conditions of predenitrification process to improve the treatment efficiency in low organic loading sewage plant in use today, and to investigate the treatment efficiency of pilot plant added night soil as well as the nitrogen removal characteristics of pilot plant added carbon sources. In the operation under the condition of $BOD_{5}$ sludge load 0.03-0.28kg $BOD_{5}$/kg VSS/d and oxic ammoniac nitrogen sludge load 0.02-0.24 $kgNH_{4}^{+}$-N/kg MLVSS/d, nitrification efficiency is higher than 95%. In order to achieve 70% nitrogen removal at the T-N sludge loading 0.06kg T-N/kg VSSㆍd and the SRT 6~11 days, optimum operating factors were revealed to $CODc_{r}$/T-N ratio 9, recycle ratio 2.6, and denitrification volume ratio 0.33. At this time, denitrification capacity was approximately 0.09 kg $NO_{3}^{-}$-N/kg $CODc_{r}$; specific nitrification rate was 3.4mg $NH_{4}^{+}$-N/g MLVSS/hr; and specific denitrification rate was 4.8mg $NO_{3}^{-}$-N/g MLVSS/hr.

Characterization of Colletotrichum Isolates Causing Anthracnose of Pepper in Korea

  • Kim, Joon-Tae;Park, Sook-Young;Choi, Woo-Bong;Lee, Yong-Hwan;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • A total of 33 isolates of Colletotrichum species obtained from pepper, apple, and strawberry in 2001 and 2002 were identified based on mycological characteristics, responses to fungicides carbendazim and the mixture of carbendazim and diethofencarb, and nucleotide sequence analysis of internal transcribed spacer (ITS) regionMost of the Colletotrichum isolates from pepper could be identified as C. acutatum. The pepper isolates produced grey white mycelia that gradually changed to dark gray. The conidia were variable in size, and almost cylindrical in shape with at least one rounded end. They could grow on PDA amended with carbendazim or with the mixture of carbendazim and diethofencarb at $10{\mu}g/ml$, to which the isolates from apple and strawberry were very sensitive. A part of the ITS regions from the Colletotrichum isolates was amplified with the specific primers designed for C. acutatum (Ca1-1) or C. gloeosporioides (Cg1-3). A primer pair of Ca1-1 and a universal primer (ITS4) amplified a 496-bp DNA fragment from all of the pepper isolates examined and one apple isolate. Taken together, it is conclusive that the Colletotrichum isolates causing the typical lesion of anthracnose on pepper fruits are C. acutatum.

Broad Bean Wilt Fabaviruses and Their Specific Ultrastructures (잠두 위조 바이러스와 세포 미세구조)

  • Choi, Hong-Soo;Choi, Jeom-Deog;Lee, Keum-Hee;Kim, Jeong-Soo
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 2001
  • Pathogenicities of the five BBWV isolates were differentiated by the reactions on the 29 host plants including Chenopodium amaranticolor. Three specific ultrastructures were observed in cells infected with BBWV The first ultrastructure was the tube made of $1\sim2$ layers of virus particles. The second one was the comb structure consists of round and angled structures. The last one was the membrane proliferation in the cytosol.

  • PDF

Arabidopsis SHL1 protein binds to a specific sequence of the TCH4 promoter in vitro (애기장대 SHL1 단백질의 TCH4 프로모터의 특정 염기 서열 결합에 관한 연구)

  • Lee, Ji Hyea;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.71-76
    • /
    • 2018
  • The Arabidopsis SHL1 (${\underline{Sh}}ort$ ${\underline{L}}ife$ 1) gene encodes a small nuclear protein that is critical for the proper expression of the developmental programs that are responsible for controlling plant stature, senescence, flowering and seed formation. The SHL1 contains a single PHD finger domain that works in conjunction with a bromo-adjacent homology (BAH) motif that is thought to function significantly in protein-protein interactions. The TCH4 gene of the Arabidopsis encodes a xylogluclan endotransglucosylase/hydrolase that is transcriptionally regulated by a variety of hormonal and environmental stimuli. We report here in this study that the SHL1 exhibits sequence specific DNA binding properties, recognizing a 14 bp region of the TCH4 promoter in vitro, spanning nucleotides -262 to -275 (GGAAAAAACTCCCA). Chiefly, the nuclear extracts of Arabidopsis contain a protein with similar binding properties as recombinant SHL1, which is absent in identified transgenic plants that are noted as expressing antisense SHL1 RNA. Interestingly, the SHL1 gene expression with a BL treatment in characteristically wild types of seedlings showed that the transcript level of SHL1 is significantly down regulated by the BL treatment. The SHL1 may play a subtle role in regulating the kinetics of induction of the TCH4 in response to several stimuli in vivo.

Current status and prospects of the meiosis-specific function of recombinase in plants (식물의 감수분열에서 상동 재조합 효소 특이 기능의 연구현황 및 전망)

  • Jung, Yu Jin;Nam, Ki Hong;Kim, Tae Sung;Lee, In Hae;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step in meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous non-sister chromatids. RAD51, the eukaryotic homolog of the bacterial RecA recombinase, plays a central role in homologous recombination (HR) in yeast and animals. Loss of RAD51 function causes lethality in the flowering plant, Arabidopsis thaliana, suggesting that RAD51 has a meiotic stage-specific function that is different from homologous pairing activity.

Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants

  • Li, Rui;Sheng, Jiping;Shen, Lin
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.121-132
    • /
    • 2020
  • β-Aminobutyric acid (BABA) has consistently been reported to enhance plant immunity. However, the specific mechanisms and downstream components that mediate this resistance are not yet agreed upon. Nitric oxide (NO) is an important signal molecule involved in a diverse range of physiological processes, and whether NO is involved in BABA-induced resistance is interesting. In this study, treatment with BABA significantly increased NO accumulation and reduced the sensitivity to Botrytis cinerea in tomato plants. BABA treatment reduced physical signs of infection and increased both the transcription of key defense marker genes and the activity of defensive enzymes. Interestingly, compared to treatment with BABA alone, treatment with BABA plus cPTIO (NO specific scavenger) not only significantly reduced NO accumulation, but also increased disease incidence and lesion area. These results suggest that NO accumulation plays an important role in BABA-induced resistance against B. cinerea in tomato plants.