• Title/Summary/Keyword: specific inhibitor

Search Result 747, Processing Time 0.033 seconds

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

  • Joo, Hee Kyoung;Lee, Yu Ran;Kang, Gun;Choi, Sunga;Kim, Cuk-Seong;Ryoo, Sungwoo;Park, Jin Bong;Jeon, Byeong Hwa
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1064-1070
    • /
    • 2015
  • Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO ($0.1-0.5{\mu}m$), a specific mitochondrial antioxidants, and cyclosporin A ($1-5{\mu}m$), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam ($1-50{\mu}m$), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.

Purification and Characterization of Bacillus subtilis JS-17 Collagenase. (Bacillus subtilis JS-17이 생산하는 Collagenase의 정제 및 특성)

  • Lim Kyoung-Suk;Son Shung-Hui;Kang Ho Young;Jun Hong-Ki
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.657-663
    • /
    • 2005
  • Collagenases are generally defined as enzymes that are capable of degrading the polypeptide backbone of native collagen under conditions that do not denature the protein. An extracellular collagenase-producing bacterial strain was isolated from kimchi and identified to be Bacillus subtilis JS-17 through morphological, cultural, biochemical characteristics and 16S rDNA sequence analysis. Optimum culture condition of Bacillus subtilis JS-17 for the production of collagenase was $1.5\%$ fructose, $1\%$ yeast extract, $0.5\%\;K_2HPO_4,\;0.4\%\;KH_2PO_4,\;0.01\%\;MgSO_4\cdot7H_2O,\;0.01\%\; MnSO_4\cdot4H_2O,\;,0.1\%$ citrate and $0.1\%\;CaCl_2$. The production of collagenase was optimal at $30^{\circ}C$ for 72 hr. A collagenase was isolated from the culture filtrate of Bacillus subtilis JS-17. The enzyme was purified using Amberlite IRA-900 column chromatography, Sephacryl S-300 HR column chromatography and DEAE-Sephadex A-50 column chromatography The purified collagenase has an specific activity 192.1 units/mg. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PACE. The purified collagenase has $100\%$ activity up to $55^{\circ}C$.

Effect of Celecoxib, a Cyclooxygenase-2-specific Inhibitor, has no Effect on Chronically Maintained Neuropathic Pain in Rats (장기간 유지된 신경병증성 통증 흰쥐에서 선택적 COX2 억제제인 Celecoxib의 진통효과)

  • Park, Eun-Sung;Kim, Hyun-Jeong;Lee, Min-Ju;Lee, Ji-Yoon;Shin, Teo-Jeon;Seo, Kwang-Suk;Yum, Kwang-Won
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • 배경: 신경병증성 통증은 스테로이드, 아편유사제 등의 진통제에 잘 반응하지 않는다. 하지만 염증성 매개물질들이 신경병증성 통증의 발생에 관여한다는 보고가 있다. 특히 선택적 COX2 억제제인 celecoxib의 신경병증성 통증에 대한 효과에 관해서 상반된 연구결과가 존재한다. 본 연구는 신경병증성 통증 모델인 척추신경 결찰모델을 이용 기계적, 냉각 이질통 및 온도감각 과민현상의 발현에 celecoxib이 미치는 영향을 관찰하여 celecoxib의 항통각효과를 확인하고자 하였다. 방법: 30마리의 쥐를 이용 척추신경을 결찰하여 신경병증성 통증을 유도하였다 celecoxib (1, 10, 100, and 300 mg/kg)을 경구 투여하였고 총 30마리 중 12마리의 쥐에서 열, 기계적자극에 대해서 통각과민, 냉각자극에 의해 이질통이 발생하였다. 약물 투여 후 30, 60, 120, 180분 후 von Frey, 냉각자극검사, Hargreaves검사를 시행하여 쥐의 행동변화를 관찰하였다. 결과: 신경결찰 후 5일 후에 celecoxib의 용량에 관계없이 열, 기계적 자극에 의한 통각과민, 냉각 자극에 대한 이질통을 감소시키지 않았다(P > 0.05). 또한 celecoxib투여에 의한 장기간의 항 통각효과는 관찰되지 않았다(P > 0.05). 결론: celecoxib을 경구로 투여하였을 때 장기간 유지된 신경병증성 통증 흰쥐에서 약의 투여용량, 투여기간에 따른 항 통각작용은 관찰되지 않았다. 따라서 조직 손상후 발생된 장기간의 신경병증성 통증에 있어서 celecoxib은 효과가 없는 것으로 사료된다.

  • PDF

A STUDY ON THE HEMOLYTIC PROPERTIES OF PREVOTELLA NIGRESCENS (Prevotella nigrescens의 용혈특성에 관한 연구)

  • Kwak, Ju-Seok;Jang, Hoon-Sang;Jang, Seok-Woo;Lee, Su-Jong;Yu, Yong-Wook;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.335-343
    • /
    • 2005
  • Hemolytic property is a specific feature of bacteria to obtain iron which is essential for its survival in host tissues. Therefore, it is thought to be one of several factors of virulence. The purpose of this study was to investigate the hemolytic properties of Prevotella nigrescens isolated from the teeth diagnosed as pulp necrosis and apical periodontitis under the presence of hemolysin inhibitors such as $NaN_3$ and dithiothreitol. heat, various pH and cultural conditions. The results were as follows; 1. Clinically isolated P. nigrescens strains and standard P. nigrscens ATCC 33563 showed hemolytic activity. 2. P. nigrescens showed higher hemolytic activity against human erythrocytes than sheep or horse erythrocytes. 3. $NaN_3$ and dithiothreitol (DTT) reduced the hemolytic activity of P. nigrescens in a dose dependent manner (p<0.05). 4. Optimal pH for the maximum hemolytic activity of P. nigrescens was 4.0 and the hemolysin was stable under the $50^{\circ}C$, but the hemolytic activity was significantly decreased at $95^{\circ}C$. 5. P. nigrescens cultured in $10\%\;CO_2$ condition showed higher hemolytic activity than the bacteria cultured in the anaerobic condition.

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy- Δ$\^$12,14/-prostaglandin J$_2$ (15-deoxy-PGJ$_2$), a naturally occurring ligand activates the peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$). Activation of PPAR-y has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-PGJ$_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-PGJ$_2$ (0.2 to 1.6 ${\mu}$M) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/$m\ell$). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-PGJ$_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-PGJ$_2$ (0.8 ${\mu}$M) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-PGJ$_2$ on the expression of p38 MAP kinase and activation of AP-1. The promoting ability of 15-deoxy-PGJ$_2$ did not occur through PPAR-${\gamma}$, as synthetic PPAR-${\gamma}$ agonist and antagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), PPAR-${\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and PGE$_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of 15-deoxy-PGJ$_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-PGJ$_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 signal pathway may be important in the promoting activity of 15-deoxy-PGJ$_2$ on the differentiation of PC12 cells.

  • PDF

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Physiological Effects of Casein-derived Bioactive Peptides (카제인 유래 생리활성 Peptide의 체내 효과)

  • Jung, Ho-Jung;Min, Bock-Ki;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.659-667
    • /
    • 2009
  • Casein is considered to be the main source of protein in milk; therefore, many studies have been conducted to identify casein-derived bioactive peptides and their physiological effects. Casein is inactive within the parent protein but can be liberated by various proteases and enzymatic hydrolysis during microbial fermentation and gastrointestinal digestion. Once absorbed, casein exhibits different bioavailabilities in the body. Specifically, casein-derived peptides function as angiotensin converting enzyme (ACE) inhibitor in the cardiovascular system; thus, they are expected to reduce and prevent hypertension. Additionally, casein-derived peptides behave as opioid-like peptides in the nervous system, which impacts relaxation. These peptides are also expected to modulate various aspects of immune functions. Finally, caseinophosphopeptide (CPP) and glycomacropeptide (GMP) may exhibit a number of nutritional effects such as the absorption of calcium, iron or zinc. Many studies have been conducted to evaluate casein-derived peptides due to their multifunctional properties and the results of these studies have contributed to the development of a wide variety of functional dairy products. The purpose of this paper was to review the generation of bioactive peptides, their absorption and metabolism, and their specific bioactive effects.

Growth Suppression by Adenovirus-mediated Gene Transfer of p16/INK4a in Glioma Cell Lines (사람의 신경교종 세포주에서 아데노바이러스 벡터를 이용한 p16/INK4a 유전자 전달에 의한 종양성장 억제)

  • Kim, Mi-Suk;Kwon, Hee-Chung;Kang, Hee-Seog;Park, In-Chul;Rhee, Chang-Hun;Kim, Chang-Min;Lee, Choon-Taek;Hong, Seok-Il;Lee, Seung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.471-476
    • /
    • 2000
  • Objective : p16/INK4a, a kind of tumor suppressor genes, encodes a specific inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. This prevents the association of CDK4 with cyclin D1, and subsequently inhibits phosphorylation of retinoblastoma tumor suppressor protein(pRb), thus preventing exit from the G1 phase. According to previous reports, over 50% of glioma tissue and 80% of glioma cell lines have been demonstrated inactivation of p16/INK4a gene. The purpose of this study was to determine whether recombinant adenovirus-p16 virus is a suitable candidate for gene replacement therapy in cases of glioma. Methods : Three human glioma cell lines(U251MG, U87MG and U373MG) that express mutant p16 protein were used. Replication-deficient adenovirus was utilized as an expression vector to transfer exogenous p16 cDNA into the cells ; control cells were infected with the Ad-${\beta}$-gal expressing ${\beta}$-galactosidase. To monitor gene transfer and the expression of exogenous genes, we used Western Blotting analysis. Flow cytometry studies of cellular DNA content were performed to determine the cell cycle phenotype of the glioma cells before and after treatment. Results : We showed here that restoration of p16/INK4a expression in p16 negative U87MG, U251MG and partially deleted U373MG by Ad-CMV-p16 induced growth suppression in vitro. Flow cytometric study revealed that Ad-CMV-p16 infected U87MG cells were arrested during the G0-G1 phase of the cell cycle. Expression of p16 transferred by Ad-CMV-p16 in glioma cells was highly efficient and maintained for more than seven days. Conclusions : Our results suggest that Ad-CMV-p16 gene therapy strategy is potentially useful and warrants further clinical investigation for the treatment of gliomas.

  • PDF

Immunostimulatory activity and intracellular signaling pathways of a rhamnogalcaturonan II polysaccharide isolated from ginseng berry (인삼열매로부터 분리한 Rhamnogalacturonan II 다당의 면역활성과 세포 내 신호전달 기작 규명)

  • Cha, Ha Young;Son, Seung-U;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.722-730
    • /
    • 2021
  • In this study, we aimed to elucidate the intracellular signaling pathways for macrophage activation by the polysaccharide GBW-II purified from ginseng berry. GBW-II consists of 14 different sugars, including rarely observed sugars such as 2-O-methyl-xylose, apiose, aceric acid, 2-keto-3-deoxy-D-manno-2-octulosonic acid, and 2-keto-3-deoxy-D-lyxo-2-heptulosaric acid, which are typical RG-II component sugars. GBW-II enhanced the production of IL-6 and TNF-α in RAW 264.7 cells. In experiments evaluating specific inhibitor activity, it was found that the production of IL-6 was suppressed by inhibitors of SB, PD, and BAY, and the production of TNF-α was suppressed by PD and BAY. The experiments with neutralizing antibodies showed that TLR4 was involved in the stimulation of IL-6 production by GBW-II in RAW 264.7 cells, whereas TNF-α production was regulated through SR and TLR2. These results suggest that GBW-II activates the MAPK and NF-κB pathways via several macrophage receptors, including SR, TLR2, and TLR4, and subsequently induces the secretion of IL-6 and TNF-α.