References
- Anholt, R.R., Pedersen, P.L., De Souza, E.B., and Snyder, S.H. (1986). The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J. Biol. Chem. 261, 576-583.
- Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
- Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M.A., and Bernardi, P. (2005). Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280, 18558-18561. https://doi.org/10.1074/jbc.C500089200
- Bono, F., Lamarche, I., Prabonnaud, V., Le Fur, G., and Herbert, J.M. (1999). Peripheral benzodiazepine receptor agonists exhibit potent antiapoptotic activities. Biochem. Biophys. Res. Commun. 265, 457-461. https://doi.org/10.1006/bbrc.1999.1683
- Chen, K.H., Reece, L.M., and Leary, J.F. (1999). Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction. Free Radic. Biol. Med. 27, 100-109. https://doi.org/10.1016/S0891-5849(99)00059-3
- Davidson, S.M., and Duchen, M.R. (2007). Endothelial mitochondria: contributing to vascular function and disease. Circ. Res. 100, 1128-1141. https://doi.org/10.1161/01.RES.0000261970.18328.1d
- Dikalova, A.E., Bikineyeva, A.T., Budzyn, K., Nazarewicz, R.R., McCann, L., Lewis, W., Harrison, D.G., and Dikalov, S.I. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 107, 106-116. https://doi.org/10.1161/CIRCRESAHA.109.214601
- Fujimura, Y., Hwang, P.M., Trout Iii, H., Kozloff, L., Imaizumi, M., Innis, R.B., and Fujita, M. (2008). Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195. Atherosclerosis 201, 108-111. https://doi.org/10.1016/j.atherosclerosis.2008.02.032
- Galiegue, S., Tinel, N., and Casellas, P. (2003). The peripheral benzodiazepine receptor: a promising therapeutic drug target. Curr. Med. Chem. 10, 1563-1572. https://doi.org/10.2174/0929867033457223
- Hardwick, M.J., Chen, M.K., Baidoo, K., Pomper, M.G., and Guilarte, T.R. (2005). In vivo imaging of peripheral benzodiazepine receptors in mouse lungs: a biomarker of inflammation. Mol. Imaging 4, 432-438.
- Jeon, B.H., Gupta, G., Park, Y.C., Qi, B., Haile, A., Khanday, F.A., Liu, Y.X., Kim, J.M., Ozaki, M., White, A.R., et al. (2004). Apurinic/apyrimidinic endonuclease 1 regulates endothelial NO production and vascular tone. Circ. Res. 95, 902-910. https://doi.org/10.1161/01.RES.0000146947.84294.4c
- Joo, H.K., Oh, S.C., Cho, E.J., Park, K.S., Lee, J.Y., Lee, E.J., Lee, S.K., Kim, H.S., Park, J.B., and Jeon, B.H. (2009). Midazolam inhibits tumor necrosis factor-alpha-induced endothelial activation: involvement of the peripheral benzodiazepine receptor. Anesthesiology 110, 106-112. https://doi.org/10.1097/ALN.0b013e318190bc69
- Joo, H.K., Lee, Y.R., Lim, S.Y., Lee, E.J., Choi, S., Cho, E.J., Park, M.S., Ryoo, S., Park, J.B., and Jeon, B.H. (2012). Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltage-dependent anion channel-1. FEBS Lett. 586, 1349-1355. https://doi.org/10.1016/j.febslet.2012.03.049
- Joo, H.K., Lee, Y.R., Park, M.S., Choi, S., Park, K., Lee, S.K., Kim, C.S., Park, J.B., and Jeon, B.H. (2014). Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells. Mitochondrion 17, 42-49. https://doi.org/10.1016/j.mito.2014.05.006
- Kanto, J.H. (1985). Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy 5, 138-155. https://doi.org/10.1002/j.1875-9114.1985.tb03411.x
- Kim, S.N., Son, S.C., Lee, S.M., Kim, C.S., Yoo, D.G., Lee, S.K., Hur, G.M., Park, J.B., and Jeon, B.H. (2006). Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage. Anesthesiology 105, 105-110. https://doi.org/10.1097/00000542-200607000-00019
- Kim, H.J., Park, K.G., Yoo, E.K., Kim, Y.H., Kim, Y.N., Kim, H.S., Kim, H.T., Park, J.Y., Lee, K.U., Jang, W.G., et al. (2007). Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal. 9, 301-307. https://doi.org/10.1089/ars.2006.1456
- Kluge, M.A., Fetterman, J.L., and Vita, J.A. (2013). Mitochondria and endothelial function. Circ. Res. 112, 1171-1188. https://doi.org/10.1161/CIRCRESAHA.111.300233
- Leducq, N., Bono, F., Sulpice, T., Vin, V., Janiak, P., Fur, G.L., O'Connor, S.E., and Herbert, J.M. (2003). Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion. J. Pharmacol. Exp. Ther. 306, 828-837. https://doi.org/10.1124/jpet.103.052068
- Levin, E., Premkumar, A., Veenman, L., Kugler, W., Leschiner, S., Spanier, I., Weisinger, G., Lakomek, M., Weizman, A., Snyder, S.H., et al. (2005). The peripheral-type benzodiazepine receptor and tumorigenicity: isoquinoline binding protein (IBP) antisense knockdown in the C6 glioma cell line. Biochemistry 44, 9924-9935. https://doi.org/10.1021/bi050150s
- Liao, J.K. (2013). Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest. 123, 540-541. https://doi.org/10.1172/JCI66843
- Madamanchi, N.R., and Runge, M.S. (2007). Mitochondrial dysfunction in atherosclerosis. Circ. Res. 100, 460-473. https://doi.org/10.1161/01.RES.0000258450.44413.96
- McEnery, M.W., Snowman, A.M., Trifiletti, R.R., and Snyder, S.H. (1992). Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. USA 89, 3170-3174. https://doi.org/10.1073/pnas.89.8.3170
- Park, M.S., Kim, C.S., Joo, H.K., Lee, Y.R., Kang, G., Kim, S.J., Choi, S., Lee, S.D., Park, J.B., and Jeon, B.H. (2013). Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells. Mol. Cells 36, 439-445. https://doi.org/10.1007/s10059-013-0195-6
- Qi, X., Xu, J., Wang, F., and Xiao, J. (2012). Translocator protein (18 kDa): a promising therapeutic target and diagnostic tool for cardiovascular diseases. Oxid. Med. Cell. Longev. 2012, 162934.
- Rogers, R.J., Monnier, J.M., and Nick, H.S. (2001). Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-1beta utilizes an alternative pathway. J. Biol. Chem. 276, 20419-20427. https://doi.org/10.1074/jbc.M008915200
- Ross, R. (1995). Cell biology of atherosclerosis. Annu. Rev. Physiol. 57, 791-804. https://doi.org/10.1146/annurev.ph.57.030195.004043
- Tomasello, F., Messina, A., Lartigue, L., Schembri, L., Medina, C., Reina, S., Thoraval, D., Crouzet, M., Ichas, F., De Pinto, V., et al. (2009). Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stressinduced apoptosis. Cell Res. 19, 1363-1376. https://doi.org/10.1038/cr.2009.98
- Veenman, L., Levin, E., Weisinger, G., Leschiner, S., Spanier, I., Snyder, S.H., Weizman, A., and Gavish, M. (2004). Peripheraltype benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem. Pharmacol. 68, 689-698. https://doi.org/10.1016/j.bcp.2004.05.011
- Zinovkin, R.A., Romaschenko, V.P., Galkin, II, Zakharova, V.V., Pletjushkina, O.Y., Chernyak, B.V., and Popova, E.N. (2014). Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging 6, 661-674. https://doi.org/10.18632/aging.100685
- Zisterer, D.M., Gorman, A.M., Williams, D.C., and Murphy, M.P. (1992). The effects of the peripheral-type benzodiazepine acceptor ligands, Ro 5-4864 and PK 11195, on mitochondrial respiration. Methods Find. Exp. Clin. Pharmacol. 14, 85-90.
Cited by
- Hydroxytyrosol Ameliorates Endothelial Function under Inflammatory Conditions by Preventing Mitochondrial Dysfunction vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/9086947
- F-GE-180, a Radiotracer for Translocator Protein (TSPO) vol.2018, pp.1555-4317, 2018, https://doi.org/10.1155/2018/9186902
- Annexin A2 Modulates ROS and Impacts Inflammatory Response via IL-17 Signaling in Polymicrobial Sepsis Mice vol.12, pp.7, 2015, https://doi.org/10.1371/journal.ppat.1005743
- Current status and future perspectives: TSPO in steroid neuroendocrinology vol.231, pp.1, 2015, https://doi.org/10.1530/joe-16-0241
- Metal complexes in cancer therapy – an update from drug design perspective vol.11, pp.None, 2015, https://doi.org/10.2147/dddt.s119488
- APE1/Ref-1 Inhibits Phosphate-Induced Calcification and Osteoblastic Phenotype Changes in Vascular Smooth Muscle Cells vol.18, pp.10, 2015, https://doi.org/10.3390/ijms18102053
- Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry vol.23, pp.1, 2015, https://doi.org/10.1038/mp.2017.232
- TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells vol.19, pp.12, 2015, https://doi.org/10.3390/ijms19123740
- Impact of Molybdenum Compounds as Anticancer Agents vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6416198
- The Role of Brain Microvascular Endothelial Cell and Blood-Brain Barrier Dysfunction in Schizophrenia vol.6, pp.1, 2015, https://doi.org/10.1159/000511552
- A Comparison of Hematological, Immunological, and Stress Responses to Capture and Transport in Wild White Rhinoceros Bulls ( Ceratotherium simum simum ) Supplemented With Azaperone or Midazolam vol.7, pp.None, 2020, https://doi.org/10.3389/fvets.2020.569576
- Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance vol.16, pp.7, 2015, https://doi.org/10.1080/15548627.2019.1659616
- TSPO protein binding partners in bacteria, animals, and plants vol.53, pp.4, 2015, https://doi.org/10.1007/s10863-021-09905-4