DOI QR코드

DOI QR Code

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

  • Joo, Hee Kyoung (Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University) ;
  • Lee, Yu Ran (Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University) ;
  • Kang, Gun (Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University) ;
  • Choi, Sunga (Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University) ;
  • Kim, Cuk-Seong (Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University) ;
  • Ryoo, Sungwoo (Department of Biological Sciences, College of Natural Sciences, Kangwon National University) ;
  • Park, Jin Bong (Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University) ;
  • Jeon, Byeong Hwa (Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University)
  • Received : 2015.06.12
  • Accepted : 2015.09.30
  • Published : 2015.12.31

Abstract

Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO ($0.1-0.5{\mu}m$), a specific mitochondrial antioxidants, and cyclosporin A ($1-5{\mu}m$), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam ($1-50{\mu}m$), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.

Keywords

References

  1. Anholt, R.R., Pedersen, P.L., De Souza, E.B., and Snyder, S.H. (1986). The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J. Biol. Chem. 261, 576-583.
  2. Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
  3. Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M.A., and Bernardi, P. (2005). Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280, 18558-18561. https://doi.org/10.1074/jbc.C500089200
  4. Bono, F., Lamarche, I., Prabonnaud, V., Le Fur, G., and Herbert, J.M. (1999). Peripheral benzodiazepine receptor agonists exhibit potent antiapoptotic activities. Biochem. Biophys. Res. Commun. 265, 457-461. https://doi.org/10.1006/bbrc.1999.1683
  5. Chen, K.H., Reece, L.M., and Leary, J.F. (1999). Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction. Free Radic. Biol. Med. 27, 100-109. https://doi.org/10.1016/S0891-5849(99)00059-3
  6. Davidson, S.M., and Duchen, M.R. (2007). Endothelial mitochondria: contributing to vascular function and disease. Circ. Res. 100, 1128-1141. https://doi.org/10.1161/01.RES.0000261970.18328.1d
  7. Dikalova, A.E., Bikineyeva, A.T., Budzyn, K., Nazarewicz, R.R., McCann, L., Lewis, W., Harrison, D.G., and Dikalov, S.I. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 107, 106-116. https://doi.org/10.1161/CIRCRESAHA.109.214601
  8. Fujimura, Y., Hwang, P.M., Trout Iii, H., Kozloff, L., Imaizumi, M., Innis, R.B., and Fujita, M. (2008). Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195. Atherosclerosis 201, 108-111. https://doi.org/10.1016/j.atherosclerosis.2008.02.032
  9. Galiegue, S., Tinel, N., and Casellas, P. (2003). The peripheral benzodiazepine receptor: a promising therapeutic drug target. Curr. Med. Chem. 10, 1563-1572. https://doi.org/10.2174/0929867033457223
  10. Hardwick, M.J., Chen, M.K., Baidoo, K., Pomper, M.G., and Guilarte, T.R. (2005). In vivo imaging of peripheral benzodiazepine receptors in mouse lungs: a biomarker of inflammation. Mol. Imaging 4, 432-438.
  11. Jeon, B.H., Gupta, G., Park, Y.C., Qi, B., Haile, A., Khanday, F.A., Liu, Y.X., Kim, J.M., Ozaki, M., White, A.R., et al. (2004). Apurinic/apyrimidinic endonuclease 1 regulates endothelial NO production and vascular tone. Circ. Res. 95, 902-910. https://doi.org/10.1161/01.RES.0000146947.84294.4c
  12. Joo, H.K., Oh, S.C., Cho, E.J., Park, K.S., Lee, J.Y., Lee, E.J., Lee, S.K., Kim, H.S., Park, J.B., and Jeon, B.H. (2009). Midazolam inhibits tumor necrosis factor-alpha-induced endothelial activation: involvement of the peripheral benzodiazepine receptor. Anesthesiology 110, 106-112. https://doi.org/10.1097/ALN.0b013e318190bc69
  13. Joo, H.K., Lee, Y.R., Lim, S.Y., Lee, E.J., Choi, S., Cho, E.J., Park, M.S., Ryoo, S., Park, J.B., and Jeon, B.H. (2012). Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltage-dependent anion channel-1. FEBS Lett. 586, 1349-1355. https://doi.org/10.1016/j.febslet.2012.03.049
  14. Joo, H.K., Lee, Y.R., Park, M.S., Choi, S., Park, K., Lee, S.K., Kim, C.S., Park, J.B., and Jeon, B.H. (2014). Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells. Mitochondrion 17, 42-49. https://doi.org/10.1016/j.mito.2014.05.006
  15. Kanto, J.H. (1985). Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy 5, 138-155. https://doi.org/10.1002/j.1875-9114.1985.tb03411.x
  16. Kim, S.N., Son, S.C., Lee, S.M., Kim, C.S., Yoo, D.G., Lee, S.K., Hur, G.M., Park, J.B., and Jeon, B.H. (2006). Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage. Anesthesiology 105, 105-110. https://doi.org/10.1097/00000542-200607000-00019
  17. Kim, H.J., Park, K.G., Yoo, E.K., Kim, Y.H., Kim, Y.N., Kim, H.S., Kim, H.T., Park, J.Y., Lee, K.U., Jang, W.G., et al. (2007). Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal. 9, 301-307. https://doi.org/10.1089/ars.2006.1456
  18. Kluge, M.A., Fetterman, J.L., and Vita, J.A. (2013). Mitochondria and endothelial function. Circ. Res. 112, 1171-1188. https://doi.org/10.1161/CIRCRESAHA.111.300233
  19. Leducq, N., Bono, F., Sulpice, T., Vin, V., Janiak, P., Fur, G.L., O'Connor, S.E., and Herbert, J.M. (2003). Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion. J. Pharmacol. Exp. Ther. 306, 828-837. https://doi.org/10.1124/jpet.103.052068
  20. Levin, E., Premkumar, A., Veenman, L., Kugler, W., Leschiner, S., Spanier, I., Weisinger, G., Lakomek, M., Weizman, A., Snyder, S.H., et al. (2005). The peripheral-type benzodiazepine receptor and tumorigenicity: isoquinoline binding protein (IBP) antisense knockdown in the C6 glioma cell line. Biochemistry 44, 9924-9935. https://doi.org/10.1021/bi050150s
  21. Liao, J.K. (2013). Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest. 123, 540-541. https://doi.org/10.1172/JCI66843
  22. Madamanchi, N.R., and Runge, M.S. (2007). Mitochondrial dysfunction in atherosclerosis. Circ. Res. 100, 460-473. https://doi.org/10.1161/01.RES.0000258450.44413.96
  23. McEnery, M.W., Snowman, A.M., Trifiletti, R.R., and Snyder, S.H. (1992). Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. USA 89, 3170-3174. https://doi.org/10.1073/pnas.89.8.3170
  24. Park, M.S., Kim, C.S., Joo, H.K., Lee, Y.R., Kang, G., Kim, S.J., Choi, S., Lee, S.D., Park, J.B., and Jeon, B.H. (2013). Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells. Mol. Cells 36, 439-445. https://doi.org/10.1007/s10059-013-0195-6
  25. Qi, X., Xu, J., Wang, F., and Xiao, J. (2012). Translocator protein (18 kDa): a promising therapeutic target and diagnostic tool for cardiovascular diseases. Oxid. Med. Cell. Longev. 2012, 162934.
  26. Rogers, R.J., Monnier, J.M., and Nick, H.S. (2001). Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-1beta utilizes an alternative pathway. J. Biol. Chem. 276, 20419-20427. https://doi.org/10.1074/jbc.M008915200
  27. Ross, R. (1995). Cell biology of atherosclerosis. Annu. Rev. Physiol. 57, 791-804. https://doi.org/10.1146/annurev.ph.57.030195.004043
  28. Tomasello, F., Messina, A., Lartigue, L., Schembri, L., Medina, C., Reina, S., Thoraval, D., Crouzet, M., Ichas, F., De Pinto, V., et al. (2009). Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stressinduced apoptosis. Cell Res. 19, 1363-1376. https://doi.org/10.1038/cr.2009.98
  29. Veenman, L., Levin, E., Weisinger, G., Leschiner, S., Spanier, I., Snyder, S.H., Weizman, A., and Gavish, M. (2004). Peripheraltype benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem. Pharmacol. 68, 689-698. https://doi.org/10.1016/j.bcp.2004.05.011
  30. Zinovkin, R.A., Romaschenko, V.P., Galkin, II, Zakharova, V.V., Pletjushkina, O.Y., Chernyak, B.V., and Popova, E.N. (2014). Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging 6, 661-674. https://doi.org/10.18632/aging.100685
  31. Zisterer, D.M., Gorman, A.M., Williams, D.C., and Murphy, M.P. (1992). The effects of the peripheral-type benzodiazepine acceptor ligands, Ro 5-4864 and PK 11195, on mitochondrial respiration. Methods Find. Exp. Clin. Pharmacol. 14, 85-90.

Cited by

  1. Hydroxytyrosol Ameliorates Endothelial Function under Inflammatory Conditions by Preventing Mitochondrial Dysfunction vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/9086947
  2. F-GE-180, a Radiotracer for Translocator Protein (TSPO) vol.2018, pp.1555-4317, 2018, https://doi.org/10.1155/2018/9186902
  3. Annexin A2 Modulates ROS and Impacts Inflammatory Response via IL-17 Signaling in Polymicrobial Sepsis Mice vol.12, pp.7, 2015, https://doi.org/10.1371/journal.ppat.1005743
  4. Current status and future perspectives: TSPO in steroid neuroendocrinology vol.231, pp.1, 2015, https://doi.org/10.1530/joe-16-0241
  5. Metal complexes in cancer therapy – an update from drug design perspective vol.11, pp.None, 2015, https://doi.org/10.2147/dddt.s119488
  6. APE1/Ref-1 Inhibits Phosphate-Induced Calcification and Osteoblastic Phenotype Changes in Vascular Smooth Muscle Cells vol.18, pp.10, 2015, https://doi.org/10.3390/ijms18102053
  7. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry vol.23, pp.1, 2015, https://doi.org/10.1038/mp.2017.232
  8. TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells vol.19, pp.12, 2015, https://doi.org/10.3390/ijms19123740
  9. Impact of Molybdenum Compounds as Anticancer Agents vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6416198
  10. The Role of Brain Microvascular Endothelial Cell and Blood-Brain Barrier Dysfunction in Schizophrenia vol.6, pp.1, 2015, https://doi.org/10.1159/000511552
  11. A Comparison of Hematological, Immunological, and Stress Responses to Capture and Transport in Wild White Rhinoceros Bulls ( Ceratotherium simum simum ) Supplemented With Azaperone or Midazolam vol.7, pp.None, 2020, https://doi.org/10.3389/fvets.2020.569576
  12. Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance vol.16, pp.7, 2015, https://doi.org/10.1080/15548627.2019.1659616
  13. TSPO protein binding partners in bacteria, animals, and plants vol.53, pp.4, 2015, https://doi.org/10.1007/s10863-021-09905-4