Browse > Article
http://dx.doi.org/10.5851/kosfa.2009.29.6.659

Physiological Effects of Casein-derived Bioactive Peptides  

Jung, Ho-Jung (Department of Food Science and Technology, Sejong University)
Min, Bock-Ki (Department of Food Science and Technology, Sejong University)
Kwak, Hae-Soo (Department of Food Science and Technology, Sejong University)
Publication Information
Food Science of Animal Resources / v.29, no.6, 2009 , pp. 659-667 More about this Journal
Abstract
Casein is considered to be the main source of protein in milk; therefore, many studies have been conducted to identify casein-derived bioactive peptides and their physiological effects. Casein is inactive within the parent protein but can be liberated by various proteases and enzymatic hydrolysis during microbial fermentation and gastrointestinal digestion. Once absorbed, casein exhibits different bioavailabilities in the body. Specifically, casein-derived peptides function as angiotensin converting enzyme (ACE) inhibitor in the cardiovascular system; thus, they are expected to reduce and prevent hypertension. Additionally, casein-derived peptides behave as opioid-like peptides in the nervous system, which impacts relaxation. These peptides are also expected to modulate various aspects of immune functions. Finally, caseinophosphopeptide (CPP) and glycomacropeptide (GMP) may exhibit a number of nutritional effects such as the absorption of calcium, iron or zinc. Many studies have been conducted to evaluate casein-derived peptides due to their multifunctional properties and the results of these studies have contributed to the development of a wide variety of functional dairy products. The purpose of this paper was to review the generation of bioactive peptides, their absorption and metabolism, and their specific bioactive effects.
Keywords
bioactive peptides; casein; milk; absorption; functionality;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Foltz, M., Meynen, E. E., Bianco, V., van Platerink, C., Koning, T. M. M.G., and Kloek, J. (2007) Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 137, 953-958   DOI
2 Grimble, G. K. (2000) Mechanisms of peptide and amino acid transport and their regulation. Furst, P., and Young, V. (eds.), In proteins, peptides and amino acids in enteral nutrition, Karger and Nestec, Basel, Switzerland, pp. 63-88
3 Jauhiainen, T. and Korpela, R. (2007) Milk peptides and blood pressure. J. Nutr. 137, 825S-829S   DOI
4 Jauhiainen, T., Vapaatalo, H., Poussa, T., Kyronpalo, S., Rasmussen, M., and Korpela, R. (2005) Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am. J. Hypertens. 18, 1600-1605   DOI   ScienceOn
5 Kilara, A. and Panyam, D. (2003) Peptides from milk proteins and their properties. Crit Rev. Food Sci. Nutr. 43, 607 - 633   DOI   ScienceOn
6 Korhonen, H. and Pihlanto-Leppala, A. (2003b) Foodderived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9, 1297-1308   DOI   ScienceOn
7 Leclerc, P. L., Gauthier, S. F., Bachelard, H., Santure, M., and Roy, D. (2002) Antihypertensive activity of caseinenriched milk fermented by Lactobacillus helveticus. Int. Dairy J. 12, 995-1004   DOI   ScienceOn
8 Matar, C., Valdez, J. C., Medina, M., Rachid, M., and Perdigon, G. (2001) Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J. Dairy Res. 68, 601-609   DOI   ScienceOn
9 Moller, N. P., Scholz-Ahrens, K. E., Roos, N., and Schrezenmeir, J. (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 47, 171-182   DOI   ScienceOn
10 Phelan, M., Aherne, A., FitzGerald, R. J., and O'Brien, N. M. (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643-654   DOI   ScienceOn
11 Pihlanto-Leppala, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H. J. T., and Karp, M. (1999) The effect of $\alpha$-lactalbumin and $\beta$-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103 J. Appl. Microbiol. 87, 540-545   DOI   ScienceOn
12 Reichelt, K. L. and Knivsberg, A. M. (2003) Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr. Neurosci. 6, 19-28   DOI   ScienceOn
13 Sun, H., Liu, D., Li, S., and Qin, Z. (2009) Transepithelial transport characteristics of the antihypertensive peptide, Lys- Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 73, 293-298   DOI   ScienceOn
14 del Mar Contreras, M., Carron, R., Montero, M. J., Ramos, M., and Recio, I. (2009) Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19, 566-573   DOI   ScienceOn
15 Ait-Oukhatar, N., Peres, J. M., Bouhallab, S., Neuville, D., Bureau, F., Bouvard, G., Arhan, P., and Bougle, D. (2002) Bioavailability of caseinophosphopeptide-bound iron. J. Lab. Clin. Med. 140, 290-294   DOI   ScienceOn
16 Ardo, Y., Lilbæk, H., Kristiansen, K. R., Zakora, M., and Otte, J. (2007) Identification of large phosphopeptides from $\beta$-casein that characteristically accumulate during ripening of the semi-hard cheese Herrg${\aa}$rd. Int. Dairy J. 17, 513-524   DOI   ScienceOn
17 Blondelle, S. E. and Lohner, K. (2000) Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55, 74-87   DOI   ScienceOn
18 Dziuba, J., Minkiewicz, P., Nalecz D., and Iwaniak, A. (1999) Database of biologically active peptide sequences. Nahrung. 43, 190-195   DOI   ScienceOn
19 Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563-566   DOI   ScienceOn
20 FitzGerald, R. J. and Meisel, H. (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84, 33-37   DOI   ScienceOn
21 Erdmann, K., Cheung, B. W., and Schroder, H. (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19, 643-654   DOI   ScienceOn
22 Vermeirssen, V., Camp, J. V., and Verstraete, W. (2004) Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 92, 357-366   DOI   ScienceOn
23 Bruck, W. M., Graverholt, G., and Gibson, G. R. (2003) A two-stage continuous culture system to study the effect of supplemental α-lactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with enteropathogenic Escherichia coli and Salmonella serotype Typhimurium. J. Appl. Microbiol. 95, 44-53   DOI   ScienceOn
24 Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Bielikowicz, K. (2009a) Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J. 19, 252-257   DOI   ScienceOn
25 Ueno, K., Mizuno, S., and Yamamoto, N. (2004) Purification and characterization of an endopeptidase that has an important role in the carboxyl terminal processing of antihypertensive peptides in Lactobacillus helveticus CM4. Lett. Appl. Microbiol. 39, 313-318   DOI   ScienceOn
26 Ruiz, P. A., Hoffmann, M., Szcesny, S., Blaut, M., and Haller, D. (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germfree rats. Immunology 115, 441-450   DOI   ScienceOn
27 Sashihara, T., Sueki, N., and Ikegami, S. (2006) An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J. Dairy Sci. 89, 2846-2855   DOI   ScienceOn
28 Ganong, W. F. (1997) Section V. In review of medical physiology, Appleton and Lange, Stamford, CT, USA , pp. 437-481
29 Garcia-Nebot, M. J., Alegria, A., Barbera, R., Clemente, G., and Romero, F. (2009) Addition of milk or caseinophosphopeptides to fruit beverages to improve iron bioavailability? Food Chem. doi:10.1016/j.foodchem.2009.06.005
30 Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2002) Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69, 103-111   DOI   ScienceOn
31 Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., and Itoh, T. (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83, 1434-1440   DOI   ScienceOn
32 Korhonen, H. and Pihlanto-Leppala, A. (2004) Milk-derived bioactive peptides: formation and prospects for health promotion. In hand-book of functional dairy products. Functional foods and nutraceuticals series 6.0, Shortt, C. and O’Brien, J. (eds.), CRC Press, Boca Raton, FL, USA, pp. 109-124
33 Meisel, H. and FitzGerald, R. J. (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des. 9, 1289-1295   DOI   ScienceOn
34 Parrot, S., Degraeve, P., Curia, C., and Martial-Gros, A. (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung. 47, 87-94   DOI   ScienceOn
35 Gray, G. M. and Cooper, H. L. (1971) Protein digestion and absorption. Gastroenterology 61, 535-544   PUBMED
36 Sipola, M., Finckenberg, P., Santisteban, J., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2001) Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol. 52, 745-754
37 Ashar, M. N. and Chand, R. (2004) Fermented milk containing ACE-inhibitory peptides reduces blood pressure in middle aged hypertensive subjects. Milchwissenschaft 59, 363-366
38 Aimutis, W. R. (2004) Bioactive properties of milk proteins with particular focus on anticariogenesis. J. Nutr. 134, 989S-995S   DOI
39 Iwan, M., Jarmolowska, B., Bielikowicz, K., Kostyra, E., Kostyra, H., and Kaczmarski, M. (2008) Transport of ì-opioid receptor agonists and antagonist peptides across Caco-2 monolayer. Peptides 29, 1042-1047   DOI   PUBMED   ScienceOn
40 Otani, H., Kihara, Y., and Park, M. (2000) The immunoenhancing property of a dietary casein phosphopeptide preparation in mice. Food Agr. Immunol. 12, 165 - 173   DOI   ScienceOn
41 Seppo, L., Jauhiainen, T., Poussa, T., and Korpela, R. (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77, 326-330   DOI
42 Quir, A., Dávalos, A., Lasunci, M. A., Ramos, M., and Recio, I. (2008) Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP. Int. Dairy J. 18, 279-286   DOI   ScienceOn
43 Silva, S. V. and Malcata, F. (2005) Caseins as source of bioactive peptides. Int. Dairy J. 15, 1-15   DOI   ScienceOn
44 Jolles, P., Parker, F., Floch, F., Migliore, D., Alliel, P., Zerial, A., and Werner, G. H. (1981) Immunostimulating substances from human casein. Immunopharmacol. Immunotoxicol. 3, 363-370
45 Saxena, P. R. (1992) Interaction between the renin-angiotensin- aldosterone and sympathetic nervous systems. J. Cardiovasc. Pharmacol. 19 Suppl 6, S80-8   DOI   PUBMED
46 Fuglsang, A., Nilsson, D., and Nyborg, N. C. B. (2003) Characterization of new milk-derived inhibitors of angiotensin converting enzyme in vitro and in vivo. J. Enzyme Inhib. Med. Chem. 18, 407-412
47 Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., and Cagno, R. D. (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42, 223-239   DOI   ScienceOn
48 Teschemacher, H. (2003) Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 9, 1331-1344   DOI   PUBMED   ScienceOn
49 FitzGerald, R. J. and Murray, B. A. (2006) Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59, 118-125   DOI   ScienceOn
50 Ondetti, M. A. and Cushman, D. W. (1982) Enzymes of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51, 283-308   DOI   ScienceOn
51 Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Iwan, M. (2009b) Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int. Dairy J. 19, 258-263   DOI   ScienceOn
52 Pauliina, J., Jauhiainen, T., Korpela, R., and Vapaatalo, H. (2009) Milk protein-derived bioactive tripeptides Ile-Pro- Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. J. Funct. Foods 1, 266-273   DOI   ScienceOn
53 Kostyra, E., Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., and Kostyra, H. (2004) Opioid peptides derived from milk proteins. Pol. J. Food Nutr. Sci. 13, 25-35
54 Nielsen, M. S., Martinussen, T., Flambard, B., Sorensen, K. I., and Otte, J. (2009) Peptide profiles and angiotensin I converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19, 155-165   DOI   ScienceOn
55 Sun, Z., Zhang, Z., Wang, X., Cade, R., Elmir, Z., and Fregly, M. (2003) Relation of β-casomorphin to apnea in sudden infant death syndrome. Peptides 24, 937-943   DOI   PUBMED   ScienceOn
56 Andrews, A. T., Williams, R. J. H., Brownsell, V. L., Isgrove, F. H., Jenkins, K., and Kanekanian, A. D. (2006) $\beta$-CN-5P and $\beta$-CN-4P components of bovine milk proteose–peptone: large scale preparation and influence on the growth of cariogenic microorganisms. Food Chem. 96, 234-241   DOI   ScienceOn
57 Cross, M. L., Mortensen, R. R., Kudsk, J., and Gill, H. S. (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen- primed mice. Med. Microbiol. Immunol. 191, 49-53   DOI   ScienceOn
58 Ganapathy, V., Leibach, F. H., and Yamada, T. (1999) Protein digestion and assimilation. In: Textbook of Gastroenterology. 3rd ed. Yamada, T. (ed). Lippincott Williams and Wilkins ilkins, Philadelphia, PA, USA, pp. 456-467
59 Juillard, V., Guillot, A., Le Bars, D., and Gripon, J. C. (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl. Environ. Microbiol. 64, 1230-1236   PUBMED
60 Ong, L. and Shah, N. P. (2008) Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT Food Sci. Technol. 41, 1555-1566   DOI   ScienceOn
61 Buikofer, U., Meyer, J., Sieber, R., and Wechsler, D. (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semihard and soft cheeses. Int. Dairy J. 17, 968-975   DOI   ScienceOn
62 Korhonen, H. (2009) Milk-derived bioactive peptides: from science to applications. J. Funct. Foods 1, 177-187   DOI   ScienceOn
63 Meisel, H. and FitzGerald, R. J. (2000) Opioid peptides encrypted in intact milk protein sequences. Br. J. Nutr. 84, 27-31   DOI   ScienceOn
64 Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., and Shimizu, M. (2002) Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 66, 378-384   DOI   ScienceOn
65 Shimizu, M. (2004) Food-derived peptides and intestinal functions. Bio. Factors 21, 43-47   DOI   PUBMED
66 Fox, P. F. and Brodkorb, A. (2008) The casein micelle: historical aspects, current concepts and significance. Int. Dairy J. 18, 677-684   DOI   ScienceOn
67 Hern$\acute{a}$ndez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52, 1504-1510   DOI   ScienceOn
68 Korhonen, H. and Pihlanto-Leppala, A. (2003a) Bioactive peptides: novel applications for milk proteins. Appl. Biotech. Food Sci. Policy 1, 133-144
69 Haug, A., Høstmark, A. T., and Harstad, O. M. (2007) Bovine milk in human nutrition-a review. Lipids Health Dis. 6, 25-41   DOI   ScienceOn
70 Hata, Y., Yamamoto, M., Ohni, M., Nakajima, K., Nakamura, Y., and Takano, T. (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am. J. Clin. Nutr. 64, 767-771   DOI
71 Clare, D. A. and Swaisgood, H. E. (2000) Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 1187-1195   DOI   ScienceOn
72 Yamamoto, N., Akino, A., and Takano, T. (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922   DOI   ScienceOn
73 Ferranti, P., Traisci, M. V., Picariello, G., Nasi, A., Boschi, V., Siervo, M., Falconi, C., Chianese, L., and Addeo, F. (2004) Casein proteolysis in human milk: tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 71, 74-87   DOI   ScienceOn
74 Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., and Addeo, F. (2000) Production of angiotensin-I-convertingenzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66, 3898-3904   DOI   ScienceOn
75 Kelleher, S. L., Chatterton, D., Nielsen, K., and Lonnerdal, B. (2003) Glycomacropeptide and $\alpha$-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 77, 1261- 1268   DOI